State space control.

Q1

21. TFind the matrix state equations in the first canonical form for the linear time-
invariant differential equation

J+b6y+6y =a+u (2.41)

with initial conditions ¥(0) = %o, #(0) = . Also find the initial conditions-on the
state variables.

Q2

22. Find the matrix state equations in the second canonical form for the equation (2.41)
of Problem 2.1, and the initial conditions on the state variables.

Q3

24. Given the state equations
d (o 0 1\/x 0)
dt (2!2) (—6 —5)(2:2) + (1 u
v = @)
Find the differential equation relating the input to the output.

Q4

2.5. Given the feedback system of Fig. 2-17 find a state space representation of this
closed loop system. '
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Ho =73 [t

Fig. 2-17



SOLUTION
Q1
Using p = d/dt, equation (2.41) can be written as p2y+ 5py+ 6y = pu+u. Dividing by P2
and rearranging,

y = %(u—ﬁy) + ;lzr(u-ﬁy)

The flow diagram of Fig. 2-14 can be drawn starting from the output at the right.
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Next, the outputs of the integrators are labeled the state variables z; and x; as ‘shown. Now
an equation can be formed using the summer on the left:

%y = —byt+u
Similarly, an equation can be formed using the summer on the right:
2 = z—by+u
Also, the output equation is y;= %,. Substitution of this back into the previous equations gives
2, = by +a+u
&y = —6xzy +u (2.42)

The state equations can then be written in matrix notation as
dfz\ _ [-5 1\(= 4 (*
at\z2) = \-6 0/\= 1)
y = (10 @

The initial conditions on the state variables must be related to o and #, the given output initial
conditions. The output equation is x,(¢) = ¥(t), so that x4(0) = y(0) =y, Also, substituting
y(t) = z(¢) into (2.42) and setting ¢ =0 gives

#(0) = —5y(0) + x9(0) + %(0)
Use of the given initial conditions determines

with the output equation

z5(0) = %o + byp — u(0)

These relationships for the initial conditions can also be obtained by referring to the flow diagram
at time t=0.



Q2

The flow diagram (Fig. 2-14) of the previous problem is turned “backwards” to get the flow
diagram of Fig. 2-15.
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Fig. 2-15

The outputs of the integrators are labeled x; and x, as shown. These state variables are dif-
ferent from those in Problem 2.1, but are also denoted x, and x, to keep the state vector x(¢) nota-
tion, as is conventional. Then looking at the summers gives the equations )

Yy = 2t (2.43)
Xy = —b6x; — by +u (2.44)

Furthermore, the input to the left integrator is
2 = (245)

This gives the state equations
d % _ 0 1\/z + 0
dt\z,) ~— \—6 —5/\a, 1)*
= a n(”a)

The initial conditions are found using (2.49),

and

w2

Yo = #1(0) + 5(0) ' ' ' (2.46)
and its derivative .
Yo = %(0) + z5(0)
Use of (2.44) and (2.45) then gives
flo = @3(0) = 62,(0) — 5z5(0) + u(0) (247)

Equations (2.46) and (2.47) can be solved for the initial conditions

2,(0) = —2yo — %o + Fu(0)
#5(0) = 8y + §7o — Ju(0)
Q3
In operator notation, the state equations are
pxy = T
pry = —6x; — bag + u

Y= xta

Eliminatiné 2, and z, then gives
Py+5py+6y = putu

This is equation (2.41) of Example 2.1 and the given state equations were derived from this equa-
tion in Problem 2.2, Therefore this is a way to check the results.



Q4

The transfer function diagram is almost in flow diagram form already. Using the Jordan
canonical form for the plant G(s) and the feedback H(s) separately gives the flow diagram of
Fig. 2-18.
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Note G(s) in Jordan form is enclosed by the dashed lines. Similarly the part for H(s) was drawn,
and then the transfer function diagram is used to connect the parts. From the flow diagram,

a(m\ _ (-1 -1\(=) (1 _ 2,
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