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1-01-j <Root Locus Design>

1. The Design Problem

The root-locus method can be quite effective m the design of either continuous or discrete-time
leedback control systems, because it graphically illustrates the variation of the svstem closed-loop poles
as a funcuon of the open-loop gain factor K. In its simplest form, design is accomplished by choosing a
value of K which results in satisfactory closed-loop behavier. This is called gain factor compensarion
(also see Section 12.2). Specifications on allowable steady state errors usually take the form of a
minimum value of K. expressed in terms ol error constants, for example, K. K, and K, (Chapter 9).
If it 1s not possible to meet all system specifications using gain lactor compensation alone, other forms
of compensation can be added to the system to alter the root-locus as needed. for example, lag. lead,
lag-lead networks, or PID} controllers.

Going back, let us concentrate on 2™ order system only

In the study of control systems, linear constant-coefficient second-order differential equations of the
form:
dy dy
=+ M — iy =wly (3.22)
di® fen ot ! i i
are important because higher-order systems can often be approximated by second-order systems, The
constant § is called the damping ratio, and the constant w, is called the undamped natural frequency of
the svstem. The forced response of this equation for inputs w belonging to the class of singularity
functions is of particular interest. That is, the forced resporse 10 a unil impulse, unit step, or wnit ramp
is the same as the wwir impulse response, unit siep respomse, OF wnll ramp cesponse of a system
represented by this eguation,

.'ll
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Fig. 34
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The positive coefficient e, is called the undamped natural frequency and the coefficient § is the damping
ratio of the system.
The Laplace transform of (1), when the initial conditions are zero. is

¥( u Uls
i s+ 2w, s+ W’ (s)

where U(s) =.%[u{1)]. The pales of the function Y(s)/U(s) = w/(s° + 2{w, s + wi) are

5= —fw, tw,y{’ -1
Nate that:
1. If {> 1, both poles are negative and real.
2. II § =1, the poles are equal. negative, and real (s = —w, ).
3. MO0 =<{ <1 the poles are complex conjugatex with negative real parts (5 = —{a, ijwny"W].
4. If {=0, the poles are imaginary and complex conjugate (s = +jw,).
S. I { <0, the poles are in the right hall of the s-plane (RHP).

Of particular interest in this book is Case 3. representing an underdamped second-order system. The
poles are complex conjugates with negative real parts and are located at

5= —{w +.ju”"."1 -—31,‘2

=

or it §= —adtju,

where 1/a=1/{w, is called the time constant of the system and w, = w1 —-§_3 is called the damped
natural frequency of the system. For ixed w,, Fig. 4-4 shows the locus of these poles as a function of {.

0<{ <1 The locus is a semicircle of radius w,. The angle # is related to the damping ratio by
#=cos '{.

Juw axis

o axis

— Juq

_j”n

Fig. 4-4
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Design Example: Gain Factor Design

EXAMPLE 14.1. Consider the design of a continuous unity feedback system with the plant G = K/ (s + L}s + 3)
and the following specifications: {1y Overshoot less than 20%, (2) K = 4. (3) 10 to 90% rise time less than | sec.

The root-locus for this systerm 15 shown in Fig. 14-1. The system closed-loop transfer function may be written

as
C K
R 5%+ 2w,s +w
\ Jo
K= 1u'~—.
K =131 \
\
\ |
_— \\ |
ANE
cos 1045 \
: —_——
-3 -2 -1 o
1
Fig, 14-1
Design target:

¢ and w, can be determined from the root-locus for a given value of K
For this system, K, is given by K/3
e Therefore K> 12

The rise time is a function of both { and w,

e IfK=13 is chosen, then...
(=05, w, =4, and the rise time 15 0.5 sec.

e Then all specifications could be met. Done!

2. The Cancelling Compensation

If the pole-zero configuration of the plant is such that the system specifications cannot be met by an

adjustment of the open-loop gain factor, a more complicated cascade compensator, as shown below:

R T C
G, G, —
Cascade Plant
Compensator
Fig. 14-2
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The difficulty encountered in applving this scheme is that it is not always apparent what open-loop
pole-zero configuration is desirable from the standpoint of meeting specifications on closed-loop system
performance.

Some situations where cancellation compensation can be used to advantage are the following:

1. 1If the specifications on system rise time or bandwidth cannot be met without compensation,
cancellation of low-frequency poles and replacement with high-frequency poles is helpful.

2. If the specifications on allowable steady state errors cannot be met. a low-frequency pole can be
cancelled and replaced with a lower-frequency pole. yielding a larger forward-loop gain at low
frequencies.

3. If poles with small damping ratios are present in the plant transfer function. they may be
cancelled and replaced with poles which have larger damping ratios.

3. Phase Compensation — L.ead and Lag Networks

Root-locus approach to control system design. The root-locus method is a
graphical method for determining the locations of all closed-loop poles from knowledge

of the locations of the open-loop poles and zeros as some parameter (usually the gain)
is varied from zero to infinity. The method yields a clear indication of the effects of pa-
rameter adjustment.

In practice, the root-locus plot of a system may indicate that the desired perfor-
mance cannot be achieved just by the adjustment of gain. In fact, in some cases, the sys-
tem may not be stable for all values of gain. Then it is necessary to reshape the root loci
to meet the performance specifications.

Effects of the addition of poles. The addition of a pole to the open-loop trans-
fer function has the effect of pulling the root locus to the right, tending to lower the
system’s relative stability and to slow down the settling of the response. (Remem-
ber that the addition of integral control adds a pole at the origin, thus making the
system less stable.) Figure 7-2 shows examples of root loci illustrating the effects of

the addition of a pole to a single-pole system and the addition of two poles to a single-
pole system.

Jw Jw Jw

Figure 7-2
(a) Root-locus plot
of a single-pole sys- B » \

tem; (b) root-lacus o ‘ e

4

plot of a two-pole
system; (¢) root-locus
plot of a three-pole
system. @ (b) ©

N

Effects of the addition of zeros. The addition of a zero to the open-loop trans-
fer function has the effect of pulling the root locus to the left, tending to make the sys-
tem more stable and to speed up the settling of the response. (Physically, the addition
of a zero in the feedforward transfer function means the addition of derivative control
to the system. The effect of such control is to introduce a degree of anticipation into the
system and speed up the transient response.)
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jo Jjw

(a) (b)

Figure 7-3 jw Joi
(a) Root-locus plot
of a three-pole sys-
tem: (b), (c), and : o

(d) root-locus o o
plots showing
effects of addition
of a zero to the
three-pole system. (c) (d)

Lead Compensation

The transfer function for a continuous system lead network, presented in Equation (6.2}, 1s
sTa
fead s+ b

where a < b.

The lead network provides compensation by virtue of its phase lead property in the low-to-
medium-frequency range and its negligible attenuation at high frequencies. The low-to-medium-
frequency range is defined as the vicinity of the resonant frequency «,. Several lead networks may be
cascaded if a large phase lead is required.

Lead compensation generally increases the bandwidth of a system.

Lag Compensation

The transfer function for a continuous system lag network, presented in Equation (6.3), is
als+b

Plﬂg_ b

s+ a

where a < b.

Effects of the lag compensator:
1. The bandwidth of the system is usually decreased.
2. The dominant time constant 7 of the system 1s usually increased. producing a more sluggish
system.
3. For a given relative stability, the value of the error constant is increased.

For a given value of error constant, relative stability is improved.

Page 6




1-01-j <Root Locus Design>

Lag-Lead Compensation

The transfer function for a continuous system lag-lead network. presented in Equation (6.4). is
(s +a Ms+b,)
BT (54 b)) (s +ay)

where ¢ b,/ biay=1, b /a, =by/a,> 1. a,b,>0.

Lag-lead compensation has all of the advantages of both lag compensation and lead compensation,
and only a minimum of their usually undesirable characteristics. Satisfaction of many system specifica-
tions is possible without the burden of excessive bandwidth and small dominant time constants.

It is not easy to generalize the method of application of Lag-Lead compensation.

Pole Zero Map

A cascade compensator can be added to a system to alter the phase characteristics of the open-loop
transfer function in a manner which favorably affects system performance. These effects were illustrated
in the frequency domain for lead, lag, and lag-lead networks using Polar Plots in Chapter 12, Sections
12.4 through 12.7. which summarize the general effects of these networks.

The pole-zero maps of continuous system lead and lag networks are shown in Figs. 14-3 and 14-4.
Note that a lead network makes a positive, and a lag network a negative phase contribution, A lag-lead

arg Proag = 8, — 8y > 0 hjw arg Pro, = 8,— 6, < 0 4w
8y
L fa
fn
- -
a —b —u o
a8+ b .
Pry = 3 .s-+ﬂ:) 0-<a<h
Fig. 14-3 Fig. 14-4

network may be obtained by appropriately combining a lag and a lead network in series, or from the
implementation described in Problem 6.14.

Since the compensated system root-locus is determined by the points in the complex plane for
which the phase angle of G = G,G, is equal to —180°, the branches of the locus can be moved by
proper selection of the phase angle contributed by the compensator. In general, lead compensation has
the effect of moving the loci to the left.

Compensation Effect

EXAMPLE 14.2, The phase lead compensator G, = (s + 2)/(s + 8) alters the root-locus of the system with the
plant G, = K/(s + 1)?, as illustrated in Fig. 14-5.
Aje W

Uncompensated Lead Compensated

ay

Fig. 14-5
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EXAMPLE 14.3. The use of simple lag compensation (one pole at —1, no zero) to alter the breakaway angles
of a root-locus from a pair of complex poles is illustrated in Fig. 14-6.

A je 4 je
7 74
K/ \_} ) 1
Prw= 27
Uncompensated Simple Lag Compensated /

ay¥y

A
~

o

Fig. 14-6

Constructing the lag and lead controller hardware

&
Figure 7-4 it
Electronic circuit Eds)
that is a lead net-
work if R1Ci > R:C;
and a lag network if o
RiCy < RoCh. =7
A
E_(5) i R,R,RCs+1 il R,C, R,C,
Efs) RR;R,Cys+1 R,CZJ n 1
R,C,
5l
Ts +1 T
=K = Al
A aTs + 1 i 1 -1)
i s
aTl
where
R,C
T=RC, aT=R.C, K ==t
11 2%-2 (4 RJCZ
Notice that
Ka= R‘Cl RZCZ = R2R4 a = M
hi R,C,R/C, RR; R,C,

This network has a de gain of K.a = RyRJ/(R1R;).

From Equation (7-1), we see that this network is a lead network if RiC; > R:Cs,
or a<1. It is a lag network if RiC; < R,Cy. The pole—zero configurations of this
network when R,C\ > R;C; and R,C, < R,C; are shown in Figure 7-5(a) and (b),
respectively.
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Juw } Jur )
O —0—% -
SHFIN A i ]l i
Gy RC RICI RiG
Figure 7-5
Pole—zero config-
urations: (a) lead network; (b) lag
(a) (b) network.

Procedure for Root Locus Design

VERY IMPORTANT: Please study the video
1.  Designing a lead compensator with root locus — Brian Douglas

2. Designing a lag compensator with root locus — Brian Douglas

Lead Compensator

1. From the performance specifications, determine the desired location for the
dominant closed-loop poles.

2. By drawing the root-locus plot, ascertain whether or not the gain adjustment
alone can yield the desired closed-loop poles. If not, calculate the angle deficiency ¢.
This angle must be contributed by the lead compensator if the new root locus is to pass
through the desired locations for the dominant closed-loop poles.

3. Assume the lead compensator G(s) to be

T il
AaTe+1 ¢

A
G(s) = K, T (0<a<1)

5+—
aT

where a and T are determined from the angle deficiency. K. is determined from the re-
quirement of the open-loop gain.

4. If static error constants are not specified, determine the location of the pole and
zero of the lead compensator so that the lead compensator will contribute the neces-
sary angle ¢. If no other requirements are imposed on the system, try to make the value
of a as large as possible. A larger value of a generally results in a larger value of K,,
which is desirable. (If a particular static error constant is specified, it is generally sim-
pler to use the frequency-response approach.)

5. Determine the open-loop gain of the compensated system from the magnitude
condition.
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Lag Compensator

Design procedures for lag compensation by the ront-l?cug meghc{g.b 'It::
procedure for designing lag compensators for the system shown in Figure 7- éf
root-locus method may be stated as follows (we assume lhgt the‘ uncompensated sys-
tem meets the transient-response specifications by simple gain adjustment; if this is not
the case, refer to Section 7-5):

1. Draw the root-locus plot for the uncompensated system whose open-loop trans-
fer function is G(s). Based on the transient-response specifications, locate the dominant

closed-loop poles on the root locus.
2. Assume the transfer function of the lag compensator to be

5+ =

. Ts+l_‘{, T

Gc‘(s) KCﬂﬁTS"’l_ ' +L
AT

Then the open-loop transfer function of the compensated system becomes G(s)G(s).

Gds) G(s) -

Figure 7-13
Control system.

3. Evaluate the particular static error constant specified in the problem.

4. Determine the amount of increase in the static error constant necessary to sat-
isfy the specifications.

5. Determine the pole and zero of the lag compensator that produce the necessary
increase in the particular static error constant without appreciably altering the original
root loci. (Note that the ratio of the value of gain required in the specifications and the
gain found in the uncompensated system is the required ratio between the distance of
the zero from the origin and that of the pole from the origin.)

6. Draw a new root-locus plot for the compensated system. Locate the desired domi-
nant closed-loop poles on the root locus. (If the angle contribution of the lag network
is very small, that is, a few degrees, then the original and new root loci are almost identi-
cal. Otherwise, there will be a slight discrepancy between them. Then locate, on the
new root locus, the desired dominant closed-loop poles based on the transient-response
specifications.) i

7. Adjust gain K. of the compensator from the magnitude condition so that the
dominant closed-loop poles lie at the desired location.
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Glossary — English/Chinese Translation

English Chinese
root locus design R
gain factor AR
open loop gain FrRIEES
phase lead 151

phase lag =R =
undamped natural frequency TorEFEEASRER
damped natural frequency EN I SpHES
damping ratio BE/REL
second order system “MERS

unit step response BTN BRI R
overshoot UES

phase compensation HERAME

lag lead compensation THEBRTAME
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