<u>Tutorial – PID control</u>

Q1 (A-10-1)

Describe briefly the dynamic characteristics of the PI controller, PD controller, and PID controller.

Q2 (A-10-2)

Plot a Bode diagram of a PID controller given by

$$G_c(s) = 2.2 + \frac{2}{s} + 0.2s$$

Q3 (Ex-10-1)

Consider the control system shown in Figure 10-7 in which a PID controller is used to control the system. The PID controller has the transfer function

$$G_c(s) = K_p \left(1 + \frac{1}{T \cdot s} + T_d s \right)$$

$$R(s) \longrightarrow G_c(s)$$
PID
Controller

Use the Ziegler-Nichols Stability Method to obtain the parameter of the tuning values.

Q4 (EE3005-17-18Q8)

- (a) Give <u>3 reasons</u> why it is difficult to tune the PID values to their optimum values. (5 marks)
- (b) Using a step-by-step approach, describe you would tune a PID controller, using the Ziegler and Nichols transient response method. (5 marks)