Dr. Norbert Cheung's Lecture Series

Level 1 Topic no: 01-h

Bode Plots

Contents

- 1. Introduction to Bode Plots
- 2. Bode Plot of Low and High Pass filters
- 3. Bode Plot of Higher Order Filters
- 4. Worked Examples

Reference:

Chapter 6 Frequency Response and Systems Concepts; G. Rizzoni, "Principles and Applications of Electrical Engineering," 5th Edition, McGraw Hill International Edition.

Chapter 8 "Frequency Response Analysis; K. Ogata, "Modern Control Engineering"

Email:	norbertcheung@szu.edu.cn
Web Site:	http://norbert.idv.hk
Last Updated:	2024-04

<u>1.</u> Introduction to Bode Plots

Bode plots consist of two graphs: the magnitude of $GH(j_{\omega})$, and the phase angle of $GH(j_{\omega})$, both plotted as a function of frequency ω . Logarithmic scales are usually used for the frequency axes and for $|GH(j_{\omega})|$.

Bode Plot displays the transfer function of a system or a circuit, in terms of frequency response. Normally, two plots are required:

- 1. Amplitude Gain (in dB) against frequency (log scale)
- 2. Phase Gain (in degrees) against frequency (log scale)

The decibels scale is $\left|\frac{A_o}{A_i}\right|_{dB} = 20\log_{10}\frac{A_o}{A_i}$

Phase scale is linear scale in degree

The frequency scale is in log₁₀, or decade. (e.g. 100Hz, 1kHz, 10kHz....)

2. Bode Plots for Low and High Pass Filter

For low pass filter:

$$\frac{V_o}{V_i}(j\omega) = \frac{1}{j\omega/\omega_0 + 1} = \frac{1}{\sqrt{1 + (\omega/\omega_0)^2}} \angle -\tan^{-1}\left(\frac{\omega}{\omega_0}\right)$$

Magnitude: -20dB/decade, turn at cut-off frequency Phase: -45°/decade; start to turn at lower one decade, flattens at higher one decade

For high pass filter:

$$\frac{V_o}{V_i}(j\omega) = \frac{j(\omega/\omega_0)}{1+j(\omega/\omega_0)} = \frac{\frac{\omega}{\omega_0} \angle \frac{\pi}{2}}{\sqrt{1+\left(\frac{\omega}{\omega_0}\right)^2} \angle \tan^{-1}\left(\frac{\omega}{\omega_0}\right)}} = \frac{\frac{\omega}{\omega_0}}{\sqrt{1+\left(\frac{\omega}{\omega_0}\right)^2}} \angle \left(\frac{\pi}{2} - \tan^{-1}\frac{\omega}{\omega_0}\right)$$

Magnitude: increase at +20dB/decade, flattens at cut-off frequency Phase: -45°/decade; from 90° start to turn at lower one decade, flattens at higher one decade

Bode Form and the Bode Gain

It is convenient to use the so-called $Bode \ form$ of a frequency response function for constructing Bode plots.

The Bode form for the function

$$\frac{K(j_{\omega}+z_1)(j_{\omega}+z_2)\cdots(j_{\omega}+z_m)}{(j_{\omega})^l(j_{\omega}+p_1)(j_{\omega}+p_2)\cdots(j_{\omega}+p_n)}$$

where l is a nonnegative integer, is obtained by factoring out all z_i and p_i and rearranging it in the form

$$\frac{\left[K\prod_{i=1}^{m} z_{i} / \prod_{i=1}^{n} p_{i}\right] (1 + j_{\omega}/z_{1})(1 + j_{\omega}/z_{2}) \cdots (1 + j_{\omega}/z_{m})}{(j_{\omega})^{l} (1 + j_{\omega}/p_{1})(1 + j_{\omega}/p_{2}) \cdots (1 + j_{\omega}/p_{n})}$$
(15.2)

The Bode gain K_B is defined as the coefficient of the numerator in (15.2):

$$K_B \equiv \frac{K \prod_{i=1}^m z_i}{\prod_{i=1}^n p_i}$$
(15.3)

1-01-f <Bode Plot>

Constant Gain

This is where
$$G(s) = \frac{1}{2}$$

$$O(3) = \frac{1}{s}$$

and so

$$G(j\omega) = \frac{1}{j\omega} = -\frac{j}{\omega}$$

This is where G(s) = sand thus $G(j\omega) = j\omega$

A Real Pole

This means a first-order lag system, where

$$G(s) = \frac{1}{\tau s + 1}$$

and thus

$$G(j\omega) = \frac{1}{j\omega\tau + 1} = \frac{1 - j\omega\tau}{1 + \omega^2\tau^2}$$

A Real Zero

This means a first-order lead system where

 $G(s)=1+\tau s$

and thus

 $G(\mathrm{j}\omega)=1+\mathrm{j}\omega\tau$

The magnitude, in decibels, is thus

 $20 \lg \sqrt{(1-\omega^2\tau^2)}$

and the phase

$$\tan \phi = \omega \tau$$

3. Bode Plot of Higher Order Filters

Step 1: Express in
$$H(j\omega) = \frac{K\left(\frac{j\omega}{\omega_{1}}+1\right)\cdots\left(\frac{j\omega}{\omega_{m}}+1\right)}{\left(\frac{j\omega}{\omega_{m+1}}+1\right)\cdots\left(\frac{j\omega}{\omega_{m}}+1\right)}$$

- Step 2: Select the appropriate scale for the Bode Plot
- Step 3: Sketch the asymptotic approximations for each factor
- Step 4: Add the graphs graphically
- Step 5: Smooth out the clines if required

How to add the various lines together?

- 1. Find the starting point on the left of graph
- 2. Find the overall trend of the graph (going up or down)
- 3. From the starting point, draw the overall trend until you meet a turning point.
- 4. From the turning point, evaluate whether the trend is upward or downward
- 5. Change the forward direction according to 4, until you scan through all part of graph.

4. Worked Examples

Example 1:
$$H(j\omega) = \frac{20\left(\frac{j\omega}{200} + 1\right)}{j\omega\left(\frac{j\omega}{10} + 1\right)\left(\frac{j\omega}{5000} + 1\right)}$$

Draw the individual lines first

Then add the line together

Example 2:
$$H(j\omega) = \frac{0.1j\omega\left(\frac{j\omega}{100} + 1\right)}{\left(\frac{j\omega}{30} + 1\right)\left(\frac{j\omega}{3000} + 1\right)}$$

Draw the individual lines.....

Then add them together.....

1-01-f <Bode Plot>

40

Result....

English	Chinese
Bode Plot	波特图
high pass filter	高通滤波器
low pass filter	低通滤波器
band pass filter	带通滤波器
magnitude and phase response	幅度和相位响应
decibel	分贝
break point	断点
approximation	近似值
asymptote	渐近线
frequency	频率

<u>Glossary – English/Chinese Translation</u>