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1-01-g <Root Locus Analysis>

1. Introduction to the Root Locus

Consider the canonical feedback control system given in Fig. 13-1. The closed-loop transfer
function is

G
T1+GH

C
R

R + [ c

H

Fig. 13-1

Let the open-loop transfer function GH be represented by

GH = KN
)

where N and D are finite polynomials in the complex variable s or z and K is the open-loop gain
factor. The closed-loop transfer function then becomes
C G GD

R 1+KN/D D+KN
The closed-loop poles are roots of the characteristic equation
D+KN=10 (13.1)

In general the location of these roots in the s-plane or z-plane changes as the open-loop gain factor K is
varied. A locus of these roots plotted in the s-plane or z-plane as a function of K is called a root-locus.

for disp]_aying the location of the polcs_of the closed-loop transfer function
G
1+GH
as a function of the gain factor K (see Sections 6.2 and 6.6} of the open-loop transfer function GH. This

method, called root-locus analysis, requires that only the location of the poles and zeros of GH be
known, and does not require factorization of the characteristic polynomial.

EXAMPLE 13.1. Consider the continuous system open-loop transfer function
KN(s) K(s+1) K(s+1)

Gl = =—
D(s) $54- 2 s(s+2)

For H =1, the closed-loop transfer function is
¢ K(s+1)
RS2+ K(s+1)
The closed-loop poles of this system are easily determined by factoring the denominator polynomial:
pi= 12+ K) +y1+1K7
p=-42+K) - 1+1K?

The locus of these roots plotted as a function of K (for K > 0) is shown in the s-plane in Fig. 13-2. As observed in
the figure, this root-locus has two branches: one for a closed-toop pole which moves from the open-loop pole at the
origin to the open-loop zero at —1, and from the open-loop pole at — 2 to the open-loop zero at — oc.
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2. Rules of the Root Locus Plot

Number of Loci

The number of loci, that is, the number of branches of the root-locus, is equal to the number of
poles of the open-loop transfer function GH (for n = m).

EXAMPLE 13.2. The open-loop transfer function of the discrete-time system GH(z)=K(z + 1)/z*(z+ %) has
three poles. Hence there are three loci in the root-locus plot.

Real Axis Loci

Those sections of the root-locus on the real axis in the complex plane are determined by counting
the total number of finite poles and zeros of GH to the right of the points in question. The following
rule depends on whether the open-loop gain factor K is positive or negative.

Rule for K> 0

Points of the root-locus on the real axis lie to the left of an odd number of finite poles and zeros.
Rule for K <0

Points of the root-locus on the real axis lie to the left of an even number of finite poles and zeros.

If no points on the real axis lie to the left of an odd number of finite poles and zeros, then no
portion of the root-locus for K > 0 lies on the real axis. A similar statement is true for K <0,

EXAMPLE 13.3. Consider the pole-zero map of an open-loop transfer function GH shown in Fig. 13-3. Since all
the points on the real axis between 0 and —1 and between —1 and —2 lie to the left of an odd number of finite
poles and zeros, these points are on the root-locus for K > 0. The portion of the real axis between — oo and —4 lies
to the left of an odd number of finite poles and zeros; hence these points are also on the root-locus for K> 0. All
portions of the root-locus for K > 0 on the real axis are illustrated in Fig. 13-4. All remaining portions of the real
axis, that is, between —2 and — 4 and between 0 and oo, lie on the root-locus for K < 0.
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X =i X i

Asymptotes

For large distances from the origin in the complex plane. the branches of a root-locus approach a
set of straight-line asymptotes. These asymptotes emanate from a point in the complex plane on the real
axis called the center of asymptotes o, given by

n m

E Pi— E z;
i=1 =t . .

6 — — =L =t
‘ n—m (13.6)
where —p, are the poles, —z, are the zeros, # is the number of poles, and m the number of zeros of

GH.
The angles between the asymptotes and the real axis are given by

{’ (27413180

degrees for K>0
g=! n—m

1(21]130

degrees for K<0
n—m

for /=0.1,2.....n— m— 1. This results in a number of asymptotes equal to n - m.
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EXAMPLE 13.4. ‘The center of asymptotes for GH = K(s+ 2)/57(5 + 4) is located at

Since n —m =3 —1 =2, there are two asvmptotes. Their angles with the real axis arc 90° and 270°. for K = 0, as

shown in Fig, 13-5.
ke
|
B0 o~ Double pole

Breakaway Points

A breakaway point g, is a point on the real axis where two or more branches of the root-locus
depart from or arrive at the real axis. Two branches leaving the real axis are illustrated in the root-locus
plot in Fig. 13-6. Two branches coming onto the real axis are illustrated in Fig. 13-7.
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Fig, 13-6 Fig, 13-7

The location of the breakaway point can be determined by solving the following equation for o
n l ni 1

L o=1

Sle,+p)  [Tile,+z)

where —p, and —z, are the poles and zeros of GH. respectively. The solution of this equation requires

(13.8)

factorization of an (n + m — 1)-order polynomial in o,. Consequently, the breakaway point can only be
easily determined analytically for relatively simple GH. However, an approximate location can often be
determined intuitively: then an iterative process can be used to solve the equation more exactly (see
Problem 13.20). Computer programs for factorization of polynomials could also be applicd.

EXAMPLE 13.5. To determine the breakaway points for GIT = K/s(s + 1)(s + 2). the following equation must be
solved for g,
1 1 1

—+ + =
a, a, + 1 a, + 2

(g, +1}{o, +2) + 0,6, +2) +o,(0,+1)=0

which reduces to 367 + 6o, + 2 = 0 whose roots are g, = —0.423, — 1.577.

Applying the real axis rule of Section 13.5 for K > 0 indicates that there arc branches of the root-locus between
0 and —1 and between — o0 and —2. Therefore the root at —0.423 is a breakaway point, as shown in Fig. 13-8.
The value 6, = — 1.577 represents a breakaway on the root-locus for negative values of K since the portion of the
real axis between —1 and — 2 is on the root-locus for K < Q.
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Departure Angle

The departure angle of the root-locus from a complex pole is given by
#y, = 180° + arg GH' (713.9)
where arg (GH' is the phase angle of GH computed at the complex pole, but ignoring the contribution of
that particular pole.

EXAMPLE 13.6. Consider the continuous systemn open-loop transfer function

GH K(s +2) K=>10
= >
(s+1+)(s+1—))

The departure angle of the root-locus from the complex pole at s = ~1 + is determined as follows. The angle of
GH for s = —1 +j, ignoring the contribution of the pole at s = —1 + j, is —45°. Therefore the departure angle is
f,=180° — 45° = 135°

and is illustrated in Fig. 13-9.
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Fig, 13-9

The angle of arrival of the root-locus at a complex zero is given by
8, =180° — arg GH" (13.10)

where arg GH" is the phase angle of GH at the complex zero, ignoring the eflect of that zero.
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3. Construction of a Root Locus

EXAMPLE 13.8. The root-locus for the closed-loop continuous system with open-loop transfer function
oH 7’( K=0
= >
s(s+2)(s+4)
1s constructed as follows. Applying the real axis rule of Section 13.5, the portions of the real axis between 0 and — 2
and between —4 and — oo lie on the root-locus for K > (b, The center of asymptotes is determined from Equation
({3.6)tobe g = (2 +4)/3=—2, and there are three asymptotes located at angles of 8= 60°, 180°, and 300°.

Since two branches of the root-locus for K > 0 come together on the real axis between 0 and — 2, a breakaway
point exists on that portion of the real axis. Hence the root-locus for K = {1 may be sketched bv estimating the
location of the breakaway point and continuing the branches of the root-locus 1o the asymptotes, as shown in Fig.
13-11. To improve the accuracy of this plot, the exact location of the breakaway point is determined from Equation
(13.8):

1 1 1

— 4 — + =0
¢ 0,+2 o,+4

'

which simplifies 10 307 + 120, + 8 = 0. The appropriate solution of this equation is o, = —0.845.

af

Fig. 13-11
The angle criterion is applied to points in the vicinity of the approximate reot-locus to improve the accuracy of

the location of the branches in the complex part of the s-plane; the magnitude criterion is used to determine the
values of K along the root-locus, The resulting root-locus plot for K > 0 is shown in Fig. 13-12.
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Fig, 13-12
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The root-locus for K < (0 is constructed in a similar manner. In this case, however, the portions ol the real axis
between 0 and oo and between —2 and —4 lic on the root-locus; the breakaway point is located at —3.135; and
the asymptotes have angles of 0°, 120°, and 240°. The root-locus for K < 0 is shown in Fig. 13-13.
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Fig. 13-13

4. Root Locus Plot Analysis

Closed Loop Transfer Function

Consider the closed-loop transfer function C/R for the canonical unity (negative) feedback system
C G

R 1+G
Open-loop transfer functions which are rational algebraic expressions can be written (for continuous
systems) as

(13.11)

KN K(s+z)(s+z25) - (s+2z,)
D (s+p)s+py) - (s+p,)

G has the same form for discrete-time systems, with z replacing s in Equation (/3.72). In Equation
(13.12), =z, are the zeros, —p, are the poles of G, m < n, and N and D are polynomials whose roots
are —z; and —p,. respectively. Then

C KN
T TR (13.13)

and it is clear that C/R and G have the same zeros but not the same poles (unless K= (). Hence

[ K{s+z)(s+z,)--(s+2,)
R (s+als+a,) - (s+a,)

where —a; denote the n closed-loop poles. The location of these poles is by definition determined
directly from the root-locus plot for a specified value of open-loop gain K.

EXAMPLE 13.8. Consider the continuous system whose open-loop transfer {unction is
K(s+2)

- K>0
(s+1V%
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Fig. 13-14

Several values of gain factor K arc shown at points on the locit denoted by small triangles. These points are the
elnsed-toop poles corresponding to the specified values of K. For K = 2, the closed-loop poles arc - &) = —2 + j and
a, = —2 — j. Therefore
C 2As+2)
R (s+2+)s+2—))
When the system is not unity feedback. then

C G
—_—= (13.14)
R 1+GH
KN
and GH = —

(13.15)

EXAMPLE 13.10. Consider the continuous system described by

 K(s+2) 1 K{x+2) -
s T s+1 ﬁ(3+1)3 ’
C K(s+1)(s+2) K(s+1)(s+2)
and —=— =

R (s+1F+k(s+2) (s+a)(s+a,)

The root-locus plot for this example is the same as that for Example 13.9. Hence for K=2, ay =2+, and
;=2 —j Thus

C A5+ 1){s+2)

R (s+2+j)s+2-))

Gain Margin

The gain margin is the factor by which the gain factor K can be multiplied before the closed-loop
system becomes unstable. It can be determined from the root-locus using the following formula:

. ) value of K at the stahility boundary
gain margin =

- (13.16)
design value of K

where the stability boundary is the jw-axis in the s-plane, or the unit circle in the z-plane. If the
root-locus does not cross the stability boundary, the gain margin is infinite.

EXAMPLE 13.12. Consider the continuous system in Fig. 13-16, The design valuc for the gain factor is §,
producing the closed-loop poles {denoted by small triangles) shown in the root-tocus of Fig. 13-17. The gain factor
at the jw-axis crossing is 64; hence the gain margin for this system is 64 /8 = 8.

R T~ 8 C
(s +2)3 3 poles.,
- ‘ K=8 _
—4 -
Fig. 13-16
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Finding the Damping Ratio

13.12  DAMPING RATIO FROM THE ROOT-LOCUS FOR CONTINUOUS SYSTEMS

The gain factor K required to give a specified damping ratio { (or vice versa) for the second-order
continuous system
K K
GH=——"""""—""— Copopa=> 0
(s+p )s+py) y
is easily determined from the root-locus. Stmply draw a line from the origin at an angle of plus or minus
# with the negative real axis, where

f=cos'¢ (13.18)

(See Section 4.13.) The gain factor at the point of intersection with the root-locus is the required value
of K. This procedure can be applied to any pair of complex conjugate poles, for systems of sccond or
higher order. For higher-order systems, the damping ratio determined by this procedure for a specific

pair of complex poles does not necessarily determine the damping (predominant time constant) of the
system.

EXAMPLE 13.16. Consider the third-order system of Example 13.15. The damping ratio { of the complex poles
for K =24 is easily determined by drawing a line from the origin to the point on the reot-locus where K= 24, as
shown in Fig. 13-20. The angle # is measured as 60°; hence

{=cosf =05
This valuc of { is a good approximation for the damping of the third-order system with K = 24 because the
complex poles dominate the response.

Jju §

Fig. 13-20
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Glossary — English/Chinese Translation

English Chinese
root locus RELR
numerator and denominator DFHE
open loop transfer function FEMEBRE
characteristic equation FHERTE
polynomial ZI

loci HEHE

real and imaginary axis TR
asymptote AMLZ
break away point e
poles and zeros REFIE R
gain margin IRISFIE
damping ratio ] =1=
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