Dr. Norbert Cheung's Lecture Series

Level 1 Topic no: 01-e

System Modeling

Contents

- 1. Mechanical System Modeling
- 2. Electrical Systems Modeling
- 3. Analogous Systems
- 4. Electromechanical Systems
- 5. Glossary

Reference:

- 1. Chapter 2, "Modern Control Engineering," K. Ogata, Prentice Hall
- 2. Schaum's Outline Series Feedback Control Systems

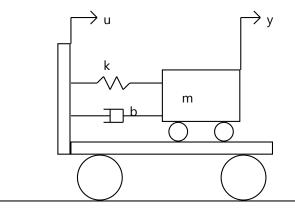
Email: norbertcheung@szu.edu.cn

Web Site: http://norbert.idv.hk

Last Updated: 2024-04

1. Mechanical Systems Modeling

Mechanical Translational System



Use Newton's second law to form the equation:

$$m\frac{d^2y}{dt^2} = -b\left(\frac{dy}{dt} - \frac{du}{dt}\right) - k(y - u)$$

Rearrange the equation gives:

$$m\frac{d^2y}{dt^2} + b\frac{dy}{dt} + ky = b\frac{du}{dt} + ku$$

Then take the Laplace transform of the mechanical equation:

$$L\left[m\frac{d^2y}{dt^2}\right] = m\left[s^2Y(s) - sy(0) - \dot{y}(0)\right]$$

$$L \left[b \frac{dy}{dt} \right] = b \left[sY(s) - y(0) \right]$$

$$L[ky] = kY(s)$$

$$L \left[b \frac{du}{dt} \right] = b \left[sU(s) - u(0) \right]$$

$$L[ku] = kU(s)$$

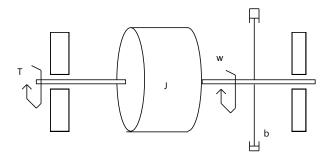
Set all the initial conditions to zero, the whole equation can be rewritten as:

$$(ms^2 + bs + k)Y(s) = (bs + k)U(s)$$

The transfer function is obtained by taking the ratio of Y(s) and U(s)

$$G(s) = \frac{Y(s)}{U(s)} = \frac{bs + k}{ms^2 + bs + k}$$

Mechanical Rotational Systems



J: Moment of inertia

b: Viscous friction coefficient

ω: Angular velocity

T: Torque

Equation of motion:

$$J\dot{\omega} + b\omega = T$$

Laplace transform of equation:

$$\frac{\Omega(s)}{T(s)} = \frac{1}{Js + b}$$

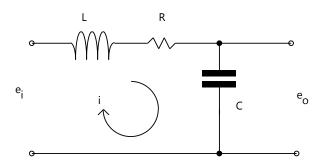
where

$$\Omega(s) = L[\omega(t)]$$

$$T(s) = L[T(t)]$$

Electrical Systems Modeling

LCR Circuit



Applying Kirchoff's voltage law:

$$L\frac{di}{dt} + Ri + \frac{1}{C}\int idt = e_i$$
 and $\frac{1}{C}\int idt = e_o$

$$\frac{1}{C}\int idt = e_{c}$$

Apply the Laplace Transform:

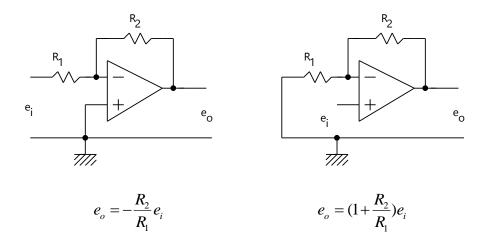
$$LsI(s) + RI(s) + \frac{1}{C} \frac{1}{s} I(s) = E_i(s)$$
 and $\frac{1}{C} \frac{1}{s} I(s) = E_o(s)$

$$\frac{1}{C}\frac{1}{s}I(s) = E_o(s)$$

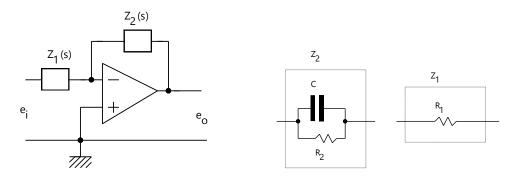
The transfer function is:

$$\frac{E_o(s)}{E_i(s)} = \frac{1}{LCs^2 + RCs + 1}$$

Operational Amplifier Circuits



Impedance Approach for Complex Transfer Functions in s domain



Since the circuit is similar to an inverter circuit, the transfer function is:

$$\frac{E_o(s)}{E_i(s)} = -\frac{Z_2(s)}{Z_1(s)}$$

The two impedances are:

$$Z_1(s) = R_1$$
 and $Z_2(s) = \frac{1}{Cs + \frac{1}{R_2}} = \frac{R_2}{R_2 Cs + 1}$

Hence the Transfer function becomes:

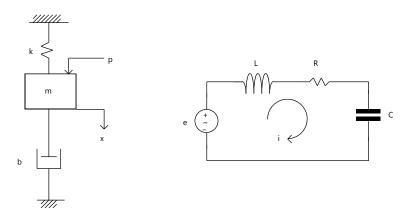
$$\frac{E_o(s)}{E_i(s)} = -\frac{\frac{R_2}{R_2 C s + 1}}{R_1} = -\frac{R_2}{R_1} \frac{1}{R_2 C s + 1}$$

3. Analogous Systems

Systems that can be represented by the same mathematical model but that are different physically are called *analogous systems*. Analogous systems are very useful in practice.

- The solution of equation of one physical system can also be applied to any other field with the same equation.
- Since one type of system may be easier to handle experimentally, it is therefore very easy to find out the behavior of an expensive system by investigating the behavior its cheaper counter part.
- In many cases, we use simple electric circuits to simulate the behavior of complex and expensive mechanical, chemical, or thermal, or other building systems.

Mechanical electrical analogies (force-voltage relationship)



System equations:

Mechanical:
$$m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = p$$

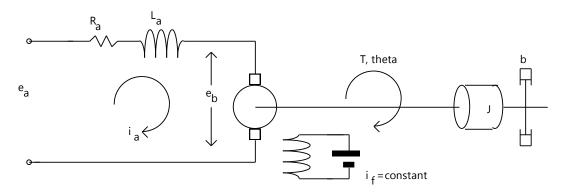
Electrical:
$$L\frac{di}{dt} + Ri + \frac{1}{C}\int idt = e$$

$$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{1}{C}q = e$$
 (in terms of electric charge, $i = dq/dt$)

Translational	Rotational Mechanical	Electrical Systems
Mechanical Systems	Systems	
Force (p)	Torque (T)	Voltage (e)
Mass (m)	Moment of inertia (J)	Inductance (L)
Viscous friction coeff. (b)	Viscous friction coeff. (b)	Resistance (R)
Spring constant (k)	Spring constant (k)	1/capacitance (1/C)
Displacement (x)	Angular displacement (θ)	Charge (q)
Velocity (dx/dt)	Angular velocity (ω)	Current (i)

4. Electro-mechanical Systems

Modeling of DC servomotors:



 R_a = armature resistance

 L_a = armature inductance

 i_a = armature current

 i_f = field current

 e_a = applied voltage

 e_b = back emf

 θ = angular displacement (theta)

T = torque

J = equivalent moment of inertia
b = equivalent viscous friction

Torque developed by the motor:

 $T = K_f i_f i_a$

Group all constant terms into *K* (motor torque constant):

$$T = Ki_a$$
 or in s-domain $T(s) = KI_a(s)$

A back emf will be generated when the motor is rotating:

$$e_b = K_b \frac{d\theta}{dt}$$
 or in s-domain $K_b s\Theta(s) = E_b(s)$

The voltage equation of the motor can be written as:

$$L_a \frac{di_a}{dt} + R_a i_a + e_b = e_a$$
 or in s-domain $(L_a s + R_a) I_a(s) + E_b(s) = E_a(s)$

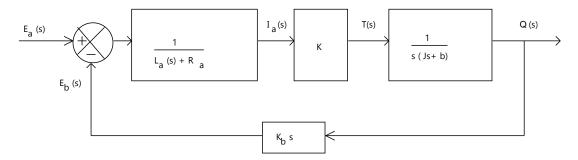
The mechanical equation can be described as:

$$J\frac{d^2\theta}{dt^2} + b\frac{d\theta}{dt} = T$$
 or in s-domain $(Js^2 + bs)\Theta(s) = T(s)$

For simplicity, assume that all the initial conditions are zero.

1-01-e < System Modeling>

Consider the $\Theta(s)$ as output, and $E_a(s)$ as input, it is possible to construct a block diagram from the above equations:



The DC motor in itself is a feedback system. The output velocity is directly related to the input voltage. The block diagram can be simplified into the following equation:

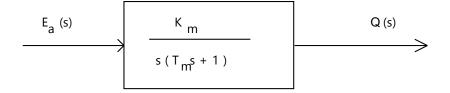
$$\frac{\Theta(s)}{E_a(s)} = \frac{K}{s \left[L_a J s^2 + \left(L_a b + R_a J \right) s + R_a b + K K_b \right]}$$

The inductor L_a is usually very small and can be neglected. The whole equation can be simplified as:

$$\frac{\Theta(s)}{E_a(s)} = \frac{K_m}{s(T_m s + 1)}$$

where
$$K_m = \frac{K}{R_a b + K K_b}$$
 (motor gain constant)

and
$$T_m = \frac{R_a J}{R_a b + K K_b}$$
 (motor time constant)



$\underline{Glossary-English/Chinese\ Translation}$

English	Chinese
modeling	建 模
electrical system	电气系统
mechanical system	机械系统
electromechanical system	机电系统
Newton's Second Law	牛顿第二定律
Free Body Diagram	自由体图
Kirchhoff's Voltage Law	基尔霍夫电压定律
operational amplifier	运算放大器
analogous System	类比系统
armature and field current	电枢和励磁电流
servomotor	伺服
viscous friction	粘性摩擦