## 1-01-d - Tutorial

## Question 1

8.6. Construct a signal flow graph for the simple resistance network given in Figure 8-
13.

$$
i_{1}=\left(\frac{1}{R_{1}}\right) v_{1}-\left(\frac{1}{R_{1}}\right) v_{2} \quad v_{2}=R_{3} i_{1}-R_{3} i_{2} \quad i_{2}=\left(\frac{1}{R_{2}}\right) v_{2}-\left(\frac{1}{R_{2}}\right) v_{3} \quad v_{3}=R_{4} i_{2}
$$



Fig. 8-13

## Question 2

Find the transfer function.
EXAMPLE 8.8. The signal flow graph of the resistance network of Example 8.6 is shown in Fig. 8-17. Let us apply Equation (8.2) to this graph and determine the voltage gain $T=v_{3} / v_{1}$ of the resistance network.


Fig. 8-17

## Question 3

Find the transfer function.


Fig. 8-26

## Question 4

8.7. Construct the signal flow graph for the following set of simultaneous equations:

$$
x_{2}=A_{21} x_{1}+A_{23} x_{3} \quad x_{3}=A_{31} x_{1}+A_{32} x_{2}+A_{33} x_{3} \quad x_{4}=A_{42} x_{2}+A_{43} x_{3}
$$

## Question 5

8.4. Consider the signal flow graph given in Fig. 8-34.


Fig. 8-34
Identify the (a) input node, (b) output node, (c) forward paths, $(d)$ feedback paths, $(e)$ self-loop. Determine the $(f)$ loop gains of the feedback loops, ( $g$ ) path gains of the forward paths.

