## Dr. Norbert Cheung's Lecture Series

## Level 1 Topic no: 01-d

## Signal Flow Graphs

## Contents

1. Introduction
2. Basic Properties of Signal Flow Graphs
3. Definitions of Signal Flow Graphs
4. Signal Flow Graph Algebra
5. General Gain Formula for Signal Flow Graphs
6. Glossary

## Reference:

1. Chapter 3, Benjamin C. Kuo, "Automatic Control Systems," 6th Edition, Prentice Hall International Editions.
2. Schaum's Outline Series - Feedback Control Systems

Email: norbertcheung@szu.edu.cn
Web Site: http://norbert.idv.hk
Last Updated: 2024-03

## 1. Introduction

A signal flow graph can be seen as a simplified version of block diagram, and it applies to linear systems only. The signal flow graph consists of nodes and branches. A signal can only transmit in the direction of the arrow.


$$
y_{2}=a_{12} y_{1}
$$

## Example

Consider the following set of equations:

$$
\begin{aligned}
& y_{2}=a_{12} y_{1}+a_{32} y_{3} \\
& y_{3}=a_{23} y_{2}+a_{43} y_{4} \\
& y_{4}=a_{24} y_{2}+a_{34} y_{3}+a_{44} y_{4} \\
& y_{5}=a_{25} y_{2}+a_{45} y_{4}
\end{aligned}
$$

We can construct the signal flow graph as follows:

(a) $y_{2}=a_{12} y_{1}+a_{32} y_{3}$

${ }_{y_{5}}$
(b) $y_{2}=a_{12} y_{1}+a_{32} y_{3}, \quad y_{3}=a_{23} y_{2}+a_{43} y_{4}$

$\stackrel{\circ}{\gamma_{5}}$
(c) $y_{2}=a_{12} y_{1}+a_{32} y_{3}, \quad y_{3}=a_{23} y_{2}+a_{43} y_{4}, \quad y_{4}=a_{24} y_{2}+a_{34} y_{3}+a_{44} y_{4}$

(d) Complete signal-flow graph

## 2. Basic Properties of Signal Flow Graphs (SFG)

1. SFG applies only to linear systems.
2. The equations for SFG must be in the form of algebraic functions.
3. Variables are represented by nodes, and are usually from left to right.
4. Signal Travel along the branches only in the direction specified.
5. The branch directing from node $y_{k}$ to $y_{\mathrm{j}}$ represents the dependence of the variable $y_{j}$ upon $y_{k}$, but not the reverse.
6. A signal $y_{k}$ traveling along a branch between nodes $y_{k}$ and $y_{j}$ is multiplied by the gain of the branch $a_{k j}$, so that a signal $a_{k i} y_{k}$ is delivered at node $y_{j}$.

The Signal Flow:

$$
X_{i}=\sum_{j=1}^{n} A_{i j} X_{j}
$$


$X_{i}=A_{i k} X_{k} \quad i=1,2, \ldots, n, k$ fixed


Fig. 8-5

$$
X_{n}=A_{21} \cdot A_{32} \cdot A_{43} \cdots A_{n(n \quad 1)} \cdot X_{1}
$$



Fig. 8-7

## 3. Definitions of Signal Flow Graphs (SFG)

Input Node (Source) - Node that has only outgoing branches.
Output Node (Sink) - Node that has only incoming branches.

(a) Original signal-flow graph

(b) Modified signal-flow graph

Ways to make $y_{2}$ and $y_{3}$ as output nodes


Ways to make $y_{2}$ as in put node
Terminology
Path - Collection of successive branches traveling in the same direction.

Forward Path - Path that starts at an input node and ends at an output node, and no node is traversed more than once.

Loop - Path that originates and terminates on the same node, along which no other node is encountered more than once.


The four loops of SFG in page 2.
Path Gain - The product of the branch gain in traveling along a path.
Forward Path Gain - Path gain of a forward path
Loop Gain - Path gain of a loop

Example 1:


The signal flow graph is easily constructed from Fig. 8-12. Note that the - or $+\operatorname{sign}$ of the summing point is associated with $H$.


Fig. 8-12

## 4. SFG Algebra

Rule 1 - Value of a variable is the sum of all incoming signals.


$$
y_{1}=a_{21} y_{2}+a_{31} y_{3}+a_{41} y_{4}+a_{51} y_{5}
$$

Rule 2 - Value of the variable in a node is transmitted to all branches leaving the node.

$$
y_{6}=a_{16} y_{1} \quad y_{7}=a_{17} y_{1} \quad y_{8}=a_{18 y_{1}}
$$

Rule 3 - Parallel branches in the same direction can be replaced by a single branch with gain equal to the sum of the parallel branches' gains.


Rule 4 - A series of unidirectional branches can be replaced by a single branch with gain equal to the product of the branch gains


Rule 5 - A feedback control system with equation $\frac{C(s)}{R(s)}=\frac{G(s)}{1+G(s) H(s)}$ can be represented as below.


## How to construct the SFG?

The signal flow graph of a system described by a set of simultaneous equations can be constructed in the following general manner.

$$
\begin{aligned}
& X_{1}=A_{11} X_{1}+A_{12} X_{2}+\cdots+A_{1 n} X_{n} \\
& X_{2}=A_{21} X_{1}+A_{22} X_{2}+\cdots+A_{2 n} X_{n} \\
& \cdots \cdots \cdots \cdots \cdots \cdots+\cdots \cdots+\cdots+A_{m n} X_{n} \\
& X_{m}=A_{m 1} X_{1}+A_{m 2} X_{2}+\cdots+\cdots+\cdots
\end{aligned}
$$

1. Write the system equations in the form as above.
2. Arrange the $m$ or $n$ (whichever is larger) nodes from left to right. The nodes may be rearranged if the required loops later appear too cumbersome.
3. Connect the nodes by the appropriate branches $A_{11}, A_{12}$. etc.
4. If the desired output node has outgoing branches, add a dummy node and a unity gain branch.
5. Rearrange the nodes and/or loops in the graph to achieve maximum pictorial clarity.

## Example of constructing SFG

## Example 1



Fig. 8-13
$i_{1}=\left(\frac{1}{R_{1}}\right) v_{1}-\left(\frac{1}{R_{1}}\right) v_{2} \quad v_{2}=R_{3} i_{1}-R_{3} i_{2} \quad i_{2}=\left(\frac{1}{R_{2}}\right) v_{2}-\left(\frac{1}{R_{2}}\right) v_{3} \quad v_{3}=R_{4} i_{2}$


Fig. 8-15
Note that signal flow graph representations of equations are not unique. For example, the addition of a unity gain branch followed by a dummy node changes the graph, but not the equations it represents.

## Example 2

The circuit below can be represented by the set of equations:

$$
\begin{aligned}
& I_{1}(s)=\left[E_{i}(s)-E_{2}(s)\right] Y_{1}(s) \\
& E_{2}(s)=\left[I_{1}(s)-I_{3}(s)\right] Z_{2}(s) \\
& I_{3}(s)=\left[E_{2}(s)-E_{0}(s)\right] Y_{3}(s) \\
& E_{o}(s)=Z_{4}(s) I_{3}(s)
\end{aligned}
$$


(a)

(b)

Page 8

## 1-01-d <Signal Flow Graphs>

## Example 3

First establish the differential equation:

$$
L \frac{d i(t)}{d t}=e_{1}(t)-R i(t)-e_{c}(t)
$$

$$
C \frac{d e_{c}(t)}{d t}=i(t)
$$

Convert them to algebraic form using Laplace Transform

$$
s I(s)=i(0)+\frac{1}{L} E_{1}(s)-\frac{R}{L} I(s)-\frac{1}{L} E_{c}(s) \quad s E(c)=e_{c}(0)+\frac{1}{C} I(s)
$$

Then solve for $I(s)$ and $E_{c}(s)$

$$
\begin{aligned}
& I(s)=\frac{1}{s+R / L} i(0)+\frac{1}{L(s+R / L)} E_{1}(s)-\frac{1}{L(s+R / L)} E_{c}(s) \\
& E_{c}(s)=\frac{1}{s} e_{c}(0)+\frac{1}{C s} I(s)
\end{aligned}
$$

The obtained answer is (b). For your reference, (c) is obtained using different input variables. This shows that the answer is not unique.

(a)

(b)

(c)

## 5. General Gain Formula (Mason's Gain Formula) for SFG

A structured method to obtain the gain formula for a given SFG.
$M=\frac{y_{\text {out }}}{y_{\text {in }}}=\sum_{k=1}^{N} \frac{M_{k} \Delta_{k}}{\Delta}$
$y_{i n} \quad$ input node variable
$y_{\text {out }}$ output node variable
$M \quad$ gain between $y_{\text {in }}$ and $y_{\text {out }}$
$N \quad$ total number of forward paths between $y_{i n}$ and $y_{o u t}$
$M_{k} \quad$ gain of the $k^{t h}$ forward path between $y_{i n}$ and $y_{o u t}$
(Note that the gain formula can only be applied between the input and the output)
$\Delta=1-$ (sum of gains of all individual loops) + (sum of products-ofgains of all possible combinations of two non-touching loops) (sum of products-of-gains of all possible combinations of three non-touching loops) $+\ldots$....
$\Delta_{\mathrm{k}}=$ the $\Delta$ of the part of signal flow graph that is non-touching with the forward path.

## Example of General Gain Formula

$1 \quad$ There is only one forward path between $E_{i}$ and $E_{o} \quad N=1 \quad M_{1}=Y_{1} Z_{2} Y_{3} Z_{4}$

2 There are 3 loops, the loop gains are: $\begin{array}{llll} & -Z_{2} Y_{1} & -Z_{2} Y_{3} & -Z_{4} Y_{3}\end{array}$

3 There is one pair of non-touching loop, and their product gain is: $Z_{2} Z_{4} Y_{1} Y_{3}$
$4 \Delta=1-\left(-Z_{2} Y_{1}-Z_{2} Y_{3}-Z_{4} Y_{3}\right)+Z_{2} Z_{4} Y_{1} Y_{3}$

5 Since all 3 loops are in touch with the forward path:
$\Delta_{1}=1$
$6 \quad M=\frac{M_{1} \Delta_{1}}{\Delta}=\frac{Y_{1} Y_{3} Z_{2} Z_{4}}{1+Z_{2} Y_{1}+Z_{2} Y_{3}+Z_{4} Y_{3}+Z_{2} Z_{4} Y_{1} Y_{3}}$

(a)

(b)

(c)

(d)

A more complicated example

$$
\begin{aligned}
& \frac{y_{7}}{y_{1}}=\frac{G_{1} G_{2} G_{3} G_{4}+G_{1} G_{5}\left(1+G_{3} H_{2}\right)}{\Delta} \\
& \Delta=1+\left(G_{1} H_{1}+G_{3} H_{2}+G_{1} G_{2} G_{3} H_{3}+H_{4}\right) \quad \text {.....individual } \\
& +\left(G_{1} H_{1} G_{3} H_{2}+G_{1} H_{1} H_{4}+G_{3} H_{2} H_{4}+G_{1} G_{2} G_{3} H_{3} H_{4}\right) \ldots . .2 \text { non-touching } \\
& +G_{1} H_{1} G_{3} H_{2} H_{4} \quad \text {..... } 3 \text { non-touching }
\end{aligned}
$$



An example with 2 forward paths
Original block diagram


The SFG, with 2 paths:

$$
P_{1}=G_{1} G_{2} G_{4} \quad P_{2}=G_{1} G_{3} G_{4}
$$



There are three feedback loops:

$$
P_{11}=G_{1} G_{4} H_{1} \quad P_{21}=-G_{1} G_{2} G_{4} I I_{2} \quad P_{31}=-G_{1} G_{3} G_{4} H_{2}
$$

There are no nontouching loops, and all loops touch both forward paths; then

$$
\Delta_{1}=1 \quad \Delta_{2}=1
$$

Therefore the control ratio is

$$
\begin{aligned}
T=\frac{C}{R}=\frac{P_{1} \Delta_{1}+P_{2} \Delta_{2}}{\Delta} & =\frac{G_{1} G_{2} G_{4}+G_{1} G_{3} G_{4}}{1-G_{1} G_{4} H_{1}+G_{1} G_{2} G_{4} H_{2}+G_{1} G_{3} G_{4} H_{2}} \\
& =\frac{G_{1} G_{4}\left(G_{2}+G_{3}\right)}{1-G_{1} G_{4} H_{1}+G_{1} G_{2} G_{4} H_{2}+G_{1} G_{3} G_{4} H_{2}}
\end{aligned}
$$

## Glossary－English／Chinese Translation

| English | Chinese |
| :---: | :---: |
| signal flow graph | 信号流图 |
| nodes and branches | 节点和分支 |
| algebraic function | 代数函数 |
| source and sink | 源和接收器 |
| forward path | 前进路径 |
| loop gain | 环路增益 |
| Mason＇s Gain Formula | 梅森增益公式 |
| General Gain Formula | 一般增益公式 |
| two non－touching loops | 两个非接触式循环 |

