1-01-b Tutorial Solution

Question 1
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By Kirchhoff’s voltage law, the applied voltage ©(1) is equal to the sum of the voltage drops vy. v, .,
and v across the resistor R, the inductor L, and the capacitor C, respeetively. Thus
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To eliminate the integral, both sides of the equation arc differentiated with respect te time, resulting in the
desired differential cquation:
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Question 2
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The parual fraction expansion of F{s) is
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The numerator coefficient of s iy b, = 1. The coefiicients ¢,, and ¢,, are determined from Equation {4.1h) as
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Question 3
EXAMPLE 4.5. The Laplace transform of {(d/dr)(e ") can be determined by application of Property 3. Since
FLle '1=1/(s+1) and lim, _ je~ " =1, then
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EXAMPLE 4.6. The Laplace transform of [je”"d7 can be determined by application of Property 4. Since

Lle "1=1/(s+1), then
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Question 4
EXAMPLE 4.7. The Laplace transform of e * is #[e ¥]=1/(s+3). The initial value of e * can be
determined by the Initial Value Theorem as
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EXAMPLE 4.8. The Laplace transform of the function (1 — e™") is 1 /s(s + 1). The final value of this function
can be determined from the Final Value Theorem as

lim (1-¢") = lim ——— =1
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Question 5

Find the solution x() of the differential equation
X+3i+2x=0, x(0)=a, £0) =5

where a and b are constants.
By writing the Laplace transform of x(f) as X(s) or

Zlx()] = X(s)

we obtain

£[x] = sX(s) ~ x(0)

#[x] = s*X(s) — sx(0) ~ %(0)
And so the given differential equation becomes

[s*X(s) ~ sx(0) — #0)] + 3[sX(s) ~ x(0)] + 2X(s) = 0
By substituting the given initial conditions into this last equation, we obtain
[°X(s) — as — b] + 3[sX(s) ~ a] + 2X(s) = 0
or
, (P +3s+2)X(s)=as+ b + 3a

Solving for X(s), we have
as+b+3a_ as+b+3a _2a+b a+b

SH+3+2 (+1DE+2) s+1 s+2
The inverse Laplace transform of X(s) gives

I(l) = E_IIX(S)] = g—ll:_w:, — Sg—l[.a_i_b]

X() =

s+1 s+2
=Qa+be'—(a+be¥ fort=0

which is- the solution of the given differential equation. Notice that the initial conditions a and &
appear in the solution. Thus x(f) has no undetermined constants, '



