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1.  System Equations 

 

A differential equation is any algebraic or transcendental equality 

which involves either differentials or derivatives. 

 

Mechanical - Newton's second law of motion:  f= Ma 

Rewrite as the rate of change of velocity v of the mass with respect 

to time t:  

 f= M(dv/dt) 

 

 

Electrical – Ohm’s Law: v=Ri 

Rewrite as a relationship between voltage v, resistance R, and the 

time rate of passage of charge through the resistor: 

 

v = R{dq/dt) 

 

 

General Form of differential equation: 

 

 

Or    

 

where a0, a1,...,an are constants, is an ordinary differential equation. 

y(t) and u(t) arc dependent variables, and t is the independent 

variable. 

 

A time-invariant equation is an equation in which none of the terms 

depends explicitly on the independent variable time. 

 

Consider the nth-order linear constant-coefficient differential 

equation: 
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It is convenient to define a differential operator: 

 

and more generally an nth-order differential operator 

 

The differential equation can now be written as: 

 
And: 

    

is called the characteristic equation. 

 

2. Laplace Transform 

 

We derive a differential equation describing the system response and 

then transform this equation into the frequency domain, where it 

becomes an algebraic equation. Algebraic techniques are then used 

to solve the transformed equation for the circuit response. The 

inverse Laplace transformation then changes the frequency domain 

response into the system response in the time domain. 

 

Linear System

Differential Equations

Classical Solving Techniques

Laplace Transform Algebraic Equation

Algebraic Solving techniques

Time response output Inverse Laplace Transform Response Transform
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Why do we need Laplace transform in Control? 

 

Take an example, to calculate 

A=B×C 

 

We may, transform it into logarithms 

 log A= log BC = log B + log C = D 

 

Then:  A = antilog D 

 

So, multiplication and division will be transformed into addition and 

subtraction. 

 

Laplace transform is a similar type of transform. 

 

Transform system behavior from time domain into a complex 

frequency of s domain. In this way differential equations will be 

much easier to manage. 

 

 

Symbolically, we represent the Laplace transformation as  

L{f(t)} = F(s) 
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Example in Laplace Transform 1 

 

Show that the Laplace transform of the unit step function ƒ(t) = u(t) 

is F(s) = 1/s. 

 

Solution 

 

Since u(t) = 1 throughout the range of integration this integral 

becomes  

 
 

Example in Laplace Transform 2 

 

Find the Laplace transform of the waveform  
 

 
 

 

Solution 

 

Using the linearity property, we write the transform of ƒ(t) in the 

form 
 

 
 

 
 

Rationalizing the preceding sum yields  
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3. Inverse Laplace Transform 
 

  
 

Use the following equation: 

    

 

To perform the inverse transformation, we must find the waveform corresponding the 

rational functions of the form 

 

 
  

where the K is the scale factor, zi (i=1,2,....m) are the zeros, and pi (i=1,2,....,n) are the 

poles of F(s). 

 

If there are more finite poles than zeros (n > M), then F(s) is called a proper rational 

function. If a proper rational function has only simple poles, then it can be 

decomposed into a partial fraction expansion of the form: 

 
  

In this case, F(s) can be expressed as a linear combination of terms with one term for 

each of its n simple poles. Each term in the partial fraction decomposition has the 

form of the transform of an exponential signal. This is, we recognize that 

. We can now write the corresponding waveform using the 

linearity property: 

 

 
  

Given the poles of F(s), finding the inverse transform ƒ(t) reduces to finding the 

residues.  

 

To illustrate the procedure, consider a case in which F(s) has three simple poles and 

one finite zero.  

 
 

We find the residue k1 by first multiplying this equation through by the factor (s - p1):  
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If we now set s = p1, the last two terms on the right vanish, leaving 

 
 

Using the same approach for k2 yields 

 
 

The technique generalizes so that the residue at any simple pole pi is 

 
 

 

Example in Laplace Inverse Transform 1 
 

Find the waveform in time domain corresponding to the transform 

 
Solution: 

F(s) is a proper rational function and has simple poles at s = 0, s = -1, s = -2. Its partial 

fraction expansion is  

 
 

The cover-up algorithm yields the residues as  

 

 

The inverse transform ƒ(t) is  

ƒ(t) = [3 - 4e-t + e-2t]u(t)  
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Example: Use Laplace Transform to solve differential equation 
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4. Basic Properties of Laplace Transform 
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5. Initial and Final Value Properties 
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Examples in Initial and Final Value Theorems 

 

 

 

 

 

 

 

----- END ----- 
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Appendix 1 - Short Table of Laplace Transform 

 

 
 

 

  

u(t) 
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Appendix 2 - Three Types of Partial Fraction 
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Appendix 3- Glossary – English/Chinese Translation 

 

English Chinese 

Differential Equation 

Newton’s Second Law of Motion 

Ohm’s Law 

Time-Invariant Equation 

Differential Operator 

Characteristic Equation 

Laplace Transform 

Frequency Domain 

Time Domain 

Algebraic Technique 

Logarithm 

Inverse Laplace Transform 

Unit Step Function 

Linearity 

Poles and Zeros 

Partial Fraction 

Linear Transformation 

Derivative and Integral 

Initial Value Theorem 

Final Value Theorem 

Time and Frequency Scaling 

Convolution Integral 

Complex Convolution Integral 

微分方程 

牛顿第二运动定律 

欧姆定律 

时间不变方程 

差分运算符 

特性方程式 

拉普拉斯变换 

频域 

时域 

代数技术 

对数 

反拉普拉斯变换 

单位步进函数 

线性 

极点和零点 

部分分数 

线性变换 

导数和积分 

初值定理 

最终值定理 

时间和频率缩放 

卷积积分 

复卷积积分 

 

 

 


