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1-01-b <Differential Equation and Laplace Transform>

1. System Equations

A differential equation is any algebraic or transcendental equality
which involves either differentials or derivatives.

Mechanical - Newton's second law of motion: f= Ma
Rewrite as the rate of change of velocity v of the mass with respect
to time t:

f= M(dv/dt)

Electrical - Ohm’s Law: v=Ri
Rewrite as a relationship between voltage v, resistance R, and the
time rate of passage of charge through the resistor:

v = R{dq/dt)

General Form of differential equation:

d”y arn l}, af}’
d, dt” +a?i—1F + HEE +an_v—u(z‘)
H d!y(!)
Z af' f - H(f)
Or i=0 dt

where ao, ai,...,anare constants, is an ordinary differential equation.
y(t) and u(t) arc dependent variables, and t is the independent
variable.

A time-invariant equation is an equation in which none of the terms
depends explicitly on the independent variable time.

Consider the n-order linear constant-coefficient differential
equation:
d"y d 1y dy

+a, ot ta—— tagy=u
drm et v 40Y
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It is convenient to define a differential operator:

d
D=—
dt
and more generally an n'-order differential operator
dii
W=
o di"

The differential equation can now be written as:
D”}, + un—ID”_ l_}'! + o +HIDJ’| + an_],-‘ = Uu

(D" +a, D" '+ - +aD+aglv=u
And:
D'+a, D'+ +aD+a,=0

is called the characteristic equation.

2. Laplace Transform

We derive a differential equation describing the system response and
then transform this equation into the frequency domain, where it
becomes an algebraic equation. Algebraic techniques are then used
to solve the transformed equation for the circuit response. The
inverse Laplace transformation then changes the frequency domain
response into the system response in the time domain.

Linear System

N
Differential Equations H[ Laplace Transform lﬂ[ Algebraic Equation 1

Classical Solving Techniques Algebraic Solving techniques

Time response output ’%[ Inverse Laplace Transform F Response Transform
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Why do we need Laplace transform in Control?

Take an example, to calculate
A=BxC

We may, transform it into logarithms
logA=logBC=1logB+logC=D

Then: A=antilog D

So, multiplication and division will be transformed into addition and
subtraction.

i > . ———s—— Solution
or division transformation | ¢ o tion | transformation

Laplace transform is a similar type of transform.

Transform system behavior from time domain into a complex
frequency of s domain. In this way differential equations will be
much easier to manage.

Behaviour described Algebraic
by differential manipulation of Solution
equation Laplace equations Inverse involving time
Time domain transformation | s domain transformation Time domain

Symbolically, we represent the Laplace transformation as

L{f(t)} = F(s)
Laplace transform. Thus the Laplace transform of some term
which is a function of time is

J (term) e~ dt
0
Because the term is a function of time it is usually written as
f(¢) with the Laplace transform, since it is a function of s,
written as F(s). It is usual to use a capital letter F for the
Laplace transform and a lower-case letter f for the time-
varying function f(¢). Thus

F(s) = Lw f(tye de [1]
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Example in Laplace Transform 1

Show that the Laplace transform of the unit step function f(z) = u(t)
Is F(s) = 1/s.

Solution

o

F(s)= IH{I Ye “dt

0

Since u(t) = 1 throughout the range of integration this integral
becomes

o w

-5t

e—( ot jadt

a+ ja

F: B e
F(sy=[e™dr=—
0,

A

0_

Example in Laplace Transform 2

Find the Laplace transform of the waveform

F()y=2u(t)—5[e ¥ Ju(t) + 3[cos 2t Ju(t) + 3[sin 2t Ju(t)

Solution

Using the linearity property, we write the transform of f(t) in the
form

L{FIOY = 20{u(f)} - 5L~ u()} + 3L{[cos 2eJu(£)} + 3L{[sin 2e]ue(£))

. _2 5 N 3s N 6
() s s+2 sS+4 sP+4

Rationalizing the preceding sum yields

o 1667 +D)
) = TG+ B
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3. Inverse Laplace Transform

LHF(s)}=f ()

Use the following equation:
1

n=—o "F(sx™d
r0=5 R

To perform the inverse transformation, we must find the waveform corresponding the
rational functions of the form

(s—z ) s—2z, ) (5—2,)
(s=p)s= Py (5= p,)

F(s)=K

where the K is the scale factor, z; (i=1,2,....m) are the zeros, and p; (i=1,2,....,n) are the
poles of F(s).

If there are more finite poles than zeros (n > M), then F(s) is called a proper rational
function. If a proper rational function has only simple poles, then it can be
decomposed into a partial fraction expansion of the form:
k, k, k
F(s)= + +onn. +
(s—p) (s—py) (s-p,)

In this case, F(s) can be expressed as a linear combination of terms with one term for
each of its n simple poles. Each term in the partial fraction decomposition has the
form of the transform of an exponential signal. This is, we recognize that

LMk fs + o)} = [ke™ ' 11(8) We can now write the corresponding waveform using the
linearity property:

f@)=[ke™ +k,e™ +....... + k. e™ lu(t)

Given the poles of F(s), finding the inverse transform f(t) reduces to finding the
residues.

To illustrate the procedure, consider a case in which F(s) has three simple poles and
one finite zero.

(5-z) - ky + ks + ks
(s—pls—pylis—ps) (s—p) (s—py) (5-p3)

Fs1=K

We find the residue ki by first multiplying this equation through by the factor (s - p1):

(5_21:' kz{S_Plj' kE(S_plj
— VP51 = K s
& P = e Y =) (emp)
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If we now set s = py, the last two terms on the right vanish, leaving
(3_21) ‘
(s =P, )(5=p3)

k= (= pOF)|_ =K

S=P

Using the same approach for k yields

k, = (s— py)F(s) G=z) |

(S_pl)(S_p3)

=K
=07

F=F7

The technique generalizes so that the residue at any simple pole pi is

k. =(s—p)F(s)

S:p!.

Example in Laplace Inverse Transform 1

Find the waveform in time domain corresponding to the transform

(s+3)
F(s)=2
s(s+1D)(s+2)

Solution:
F(s) is a proper rational function and has simple poles at s =0, s = -1, s = -2. Its partial
fraction expansion 1is

k3

kl kl
Fs)=—+——+——
s s+1 s+2

The cover-up algorithm yields the residues as

2(s+3)
b =sEG) T o
S0 (sH+D(s+2)|
. GRS I
L =(s+1) (S)S:_1‘3(3+2)S_1__
i _2(s+3)|
=GR, =IO

The inverse transform f(t) is

f(t) =[3 - 4et + eu(t)
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Example: Use Laplace Transform to solye differential equation

Example 5
Use Laplace transforms to solve the following differential equation:
dx
3— = 4
ar + 2x

with x =0 at t = 0.

Answer

The Laplace transform of 3dx/dz is 3 times the Laplace transform of
dx/ds. The Laplace transform of 2x is 2 times the Laplace transform
of x. The Laplace transform of 4 is, since this can be considered to be
a step function of height 4, 4/s. Thus

3[sX(s) — x(0)] + 2X(s) = 4/s

where X(s) is the Laplace transform of x. Since x(0) = 0 then
3[sX(s) — 0] + 2X(s) = 4/s

and so
352X (s) + 25X (s) = 4

4 en)
X(s) = 352 + 25 s[s + (2/3)]

We now need to find the functions which would give the Laplace
transforms of this form in order to obtain the inverse transformation
and obtain x. Since the inverse transformation of a/[s(s + a)] is
(1 — e ) then

x=2(1 — e %3
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4. Basic Properties of Laplace Transform

The Laplace transfgrm is a linear rransformation between functions defined m the -domain
and functions defined in the s-domain. That is, of F{s) and Fi{(s) arc the Laplace transtorms
of f{tyand f,(t), respectively, then a,F\(s) + a,F,(s} is the Laplace transform of a, f,(¢) +
a f7(t). where u;, and «a, are arbitrary constants.

The inverse Laplace transform is a linear transformation between functions defined in the
s-domain and functions defined in the -domain. That is. if f,(r) and f.(7) are the inverse
Laplace trapsforms of F(s) and FJ(s), respectively, then b f,(¢) + b, f5(¢) is the inverse
Laplace transform of & F\(s) + b,4%(s), where b, and &, are arbitrary conslants.

The Laplace transform of the derivative df /di of a function f(r) whose Laplace transform is
F(s)ys

; 4 +
“"”[E] = sF(s) - 7{0*)

where f(0™) is the imtial value of f(r), evaluated as the one-sided limit of f(r) as ¢
approaches zero from positive values.

The Laplace transform of the integral [jf(7)d of a function f{1) whose Laplace transform is
Fisyis

yllﬁﬂr)m%@

The initial value f(0 ') of the function f(¢) whose Laplace transform is Fis) 1s
A0y =lm/f{¢) = lim sF(s) >0
=0 &= o

This relation 1s called the fnitial Value Theorem.

The final value f{oc) of the function f(¢) whose Laplace transform is F{s} is
flee) = lim f(r) = limsF(s)
I oo §—=0

if im, , _ f(r} exists. This relation is called the Final Vafue Theorem.
The Laplace transform of a function f(t/a) (Time Scaling) is

.S?lf(iﬂ —aF{as)
a
where F(s) =2 f(0)].

The inverse Laplace transform of the function F(s/a) ( Frequency Scaling) is

E‘I[F(S)] =af(at)

where & [ F(s)] = f(1).
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The Laplace rransform of the function f{: — T} (Time Delay), where T>0and f(r —T)=10
for r < T, is

Lf1-T)] ¢ "'Fis)
where F{sy=2[ ().
The Laplace transform of the function e “f{¢} is given by
,?[e "”f(l)] =F(s+a)
where F(s)=%[f(#)] (Complex Translation).

The Laplace transform of the producr of two functions f,(r) and £,(1) is given by the complex
convolution integral

¢ jo0

1
ZUA0 =5~ [ TR Els - e) do

o= foo

where Fi(s) =21 f(1)], Fy(s) =] fy(1)].

The inverse Laplace transform of the product of the two iransforms Fi{s) and F,(s) is given by
the convolution integrals

2R EG] = [ An0ne=r)d= [ A=) ds
where @7 F()]=f,(1), LUF(N]=f().

5. Initial and Final VValue Properties

If a Laplace transform is multiplied by s, the value of the
product as s tends to infinity is the value of the inverse
transform as the time ¢ tends to zero.

limit sF(s) = limit f(¢) [4]
§—> 00 +—0 .
This is known as the initial value theorem.
If a Laplace transform is multiplied by s, the value of the

product as s tends to zero is the value of the inverse transform
as t tends to zero.

If a Laplace transform is multiplied by s, the value of the
product as s tends to infinity is the value of the inverse
transform as the time ¢ tends to zero.

§—>00 —0

limit sF(s) = limit £(r) (4]

This is known as the initial value theorem.
If a Laplace transform is multiplied by s, the value of the

product as s tends to zero is the value of the inverse transform
as t tends te zero.
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Examples in Initial and Final VValue Theorems

Example 11

Without evaluating the Laplace transforms, what are the initial and
final values of the functions giving the following transforms?

s+ a
§2

V(RO
(b) Vel$) = 17 (WROYs

(a) F(s)=

Answer
(a) If the expression is multiplied by s it becomes

sF(s)=S+a

=142
)

Using the initial value theorem, when s — then the expression
tends to the value 1. So the initial value of the function is 1.
Using the final value theorem, when s — 0 the expression tends
to the value . So the final value of the function is .

(b) If the expression is multiplied by s it becomes

V(1/RC)

sVel$) = 1 (WRO)

Using the initial value theorem, when s — o then the expression
tends to the value 0. So the initial value of v¢ is 0. Using the final
value théorem, when s — 0 then the expression tends to the
value V(1/RC)/(1/RC) or V.
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Appendix 1 - Short Table of Laplace Transform

Time Function Laplace Transform
Unit Impulse 0(1) 1
_ 1
Unit Step u(t) -
s
. 1
Unit Ramp ! —
5
n!
Polynomial " —
s
. 1
Exponential e
S+ a
. . w
Sine Wave sin wt TR
R
‘ s
Cosine Wave COS wt 5 5
St w
- . w
Damped Sine Wave e “ sinwt 5
(S + a) +w
) s+a
Damped Cosine Wave e~ “'cos wt 5
(s+a) + o
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Appendix 2 - Three Types of Partial Fraction

There are basically three types of partial fractions. The form
of the partial fractions for each of these types is as follows:

1 Linear factors in the denominator

()

(s+a)is+ b)s+c)

) ) A B C
Partial fraction + +
s+a s+b s+c

Expression

2 Repeated linear factors in the denominator

Expression ) ,,,
(s + a)
Partial fraction + B 7t < 3
s+a (s+a) (s+a)
. N
s+ a)

3 Quadratic factors in the denominator, when the quadratic
does not factorize without imaginary terms

f(s)

as® + bs + ¢

As+ B
as* + bs + ¢

Expression

Partial fraction
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Appendix 3- Glossary — English/Chinese Translation

English

Chinese

Differential Equation
Newton’s Second Law of Motion
Ohm’s Law

Time-Invariant Equation
Differential Operator
Characteristic Equation
Laplace Transform
Frequency Domain

Time Domain

Algebraic Technique
Logarithm

Inverse Laplace Transform
Unit Step Function
Linearity

Poles and Zeros

Partial Fraction

Linear Transformation
Derivative and Integral
Initial Value Theorem

Final Value Theorem

Time and Frequency Scaling
Convolution Integral
Complex Convolution Integral

MaTRE
s "I nEfE
RRIBRERR
RIIEJA3E TS
EDIEEF
FESRES
RIERIHf AR
ST

Ak

REEA

POE
RAFERIERZ R
BB\ EREN
2t
MRMER
BODE
iR
SEFR D
YHEEE
REETEE
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