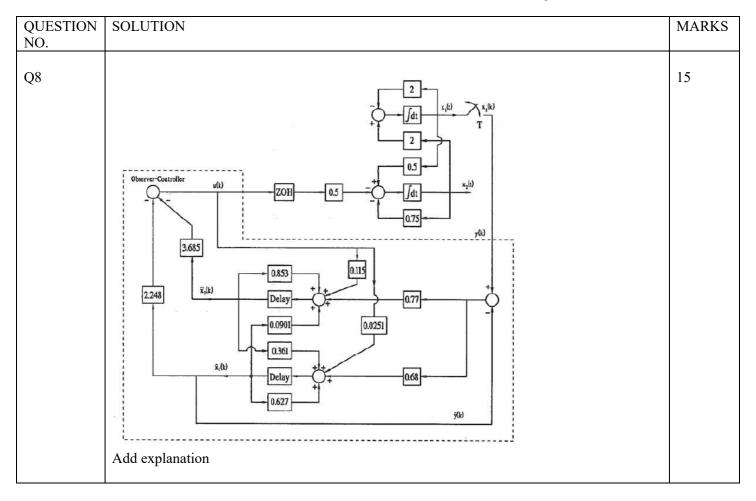
DEPARTMENT OF ELECTRICAL ENGINEERING

SOLUTION & MARKING SCHEME

(Semester 2, 2021/22)

SUBJECT (Code & Title)	EE4008A Applied Digital Control
SUBJECT EXAMINER	Dr N.C. Cheung
SUBJECT MODERATOR	Prof P.T. Lau

QUESTION	SOLUTION	MARKS
NO.		
Q1	A multivariable system:	3
(a)	 A multivariable plant is a dynamic system. It is a "target to be controlled" in a feedback system It is described by differential equations. Contains a multiple number of internal variables. 	3
	Disturbances $\begin{array}{c c} u_1(t) & & & y_1(t) \\ u_2(t) & & & y_2(t) \\ u_r(t) & & & & & \\ \end{array}$ Plant to be Controlled $\begin{array}{c c} y_1(t) \\ y_2(t) \\ \vdots \\ y_m(t) \end{array}$ Initial Conditions	
(b)	Example: A robotic arm feedback servo system	2
(c)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5


QUESTION NO.	SOLUTION	MARKS
Q2	START OPTICAL LZ BUTTON SWITCH LI SUITCH PRINCE LI SUITCH START BUTTON Add Some explanations	10
Q3	Find the inverse Z – transform of $\frac{8z^2}{(2z-1)(4z-1)}$ Let F (z) = $\frac{8z^2}{(2z-1)(4z-1)} = \frac{z^2}{(2z-1)(2z-1)(2z-1)}$	15
	$(2z-1) (4z-1) (z-\frac{1}{2}) (z-\frac{1}{4})$	
	F(z) z Then =	
	$z = (z - \frac{1}{2})(z - \frac{1}{4})$	
	Now, $\frac{z}{(z-\frac{1}{2})(z-\frac{1}{4})} = \frac{A}{z-\frac{1}{2}} + \frac{B}{z-\frac{1}{4}}$	
	We get, $\frac{F(z)}{z} = \frac{2}{z - \frac{1}{2}} - \frac{1}{z - \frac{1}{4}}$	
	Therefore, $F(z) = 2 - \frac{z}{z - \frac{1}{2}} - \frac{z}{z - \frac{1}{4}}$	
	Inverting, we get	
	$f_n = Z^{-1}{F(z)} = 2 Z^{-1} \left\{ \frac{z}{z - \frac{1}{2}} \right\} - Z^{-1} \left\{ \frac{z}{z - \frac{1}{4}} \right\}$	
	i.e, $f_n = 2(1/2)^n - (1/4)^n$, $n = 0, 1, 2,$	

QUESTION NO.	SOLUTION	MARKS
Q4	Example: H(z)= $\frac{b(0)+b(1)z^{-1}+b(2)z^{-2}+b(3)z^{-3}}{1+a(1)z^{-1}+a(2)z^{-2}+a(3)z^{-3}}$	5
(a)	$V(z)$ Σ $V(z)$ Σ Z^{-1}	
	$X(z) \longrightarrow (\Sigma) \longrightarrow Y(z)$	5
	Direct Form 2 saves $3x \frac{1}{z}$ functional blocks	
(b)	$X(z)$ \longrightarrow Σ $Y(z)$	5
	Direct form 2 transposed further saves $3x$ adders	

QUESTION NO.	SOLUTION	MARKS
Q5	Step 1: Find the open loop step response of the plant $ \begin{array}{cccccccccccccccccccccccccccccccccc$	10
Q6	$\begin{aligned} K_d &= 0.5L K_p = \frac{1}{R} \\ H(z) &= H_c(s) _{s = \frac{2}{T_d} \left(\frac{1-z^{-1}}{1+z^{-1}}\right)} \\ &= \frac{1}{\frac{2}{T_d} \left(\frac{1-z^{-1}}{1+z^{-1}}\right) - a} \\ &= \frac{T_d(1+z^{-1})}{2(1-z^{-1}) - aT_d(1+z^{-1})} \\ &= \frac{T_d(1+z^{-1})}{(2-aT_d) - (2+aT_d)z^{-1}} \\ &= \frac{\beta(1+z^{-1})}{1-\alpha z^{-1}} \text{ (bilinar transform)} \end{aligned}$ Calculate alpha and beta, by putting Td=0.1, and a=7	10

QUESTION NO.	SOLUTION	MARKS
Q7 (a)	BI BI BI BI OCI CO OCI OCI OCI OCI OCI OCI OCI OCI O	3
(b)	SEQUENCE OF OPERATION A - Normal mode — No intruder and no over temperature B - Intruder mode — Intruder alert, sound siren and yellow flashing lamp C - Over temperature mode — over temperature alert, sound siren and red flashing lamp	3
(c)	I/o. SUIMMARY Input Type Mode of Operation Output Analogue Binary A B C RED YELLOW SIREN Core Temperature X X X X Intruder Alert X X X X	3
(d)	MODE SUMMARY Input Conduction Output Action Temperature Occupancy RED YELLOW SIREN A below critical temp no introder moaction no action B — introder alert — flashing Sound C above critical — floshing — sound temp	3
(e)	To above ? Yes Flashing The Silen OCI OCI Mix above ? Yes Flashing Flashing Flashing	3
	lac N	

Semester 2, 2021/22 Subject Code: EE4008

