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1. Converting the plant into digital state space form

Let us start with an example, in the continuous time domain:

Example 6.1. Consider the inertial plant which is described in Example
3.2 by the transfer function

_Ye) _ 1
T U(s)  s?

The equivalent differential equation is

G(s)

y = u(t)
Now define the two required state variables as

Xy =Y

and
X, =Y =X
so the differential equations governing the system are
X = X,

X, = u(l)

)= o] [

and the measurement equation is

X3
y» =11 UIL]

2

or in matrix form,

Consider the system defined by

x = Ax + Bu
y = Cx
X
A
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Next, we consider another case, in which we want to convert the system into digital
form:

Example 6.2. Consider now the problem of the thermal system of Ex-
ample 3.3. Let us define the temperatures as the state variables, so the
state equations in matrix form are

d|x -2 2 :l[xlil [ 0 0 }[TU(I):\
= o of
dt [xz] |:U.5 —-0.75] [ x 0.25 0.5 u(®)

and if temperature x,() is the measured quantity on which to base control,

the output equation is
X1
y(@» =[1 U][ ]
X2

Take the original state space equation above, add ZOH and sampler on front and back.

W oy [l g

Through MATLAB/SIMULINK (or through solution of state equation calculation),

we can transform the above block diagram into an equivalent control block diagram
as below:

{k} + . k#
u B x(k#1) Delay 1{(!()4=

-+

C ylk)

For T=0.25s:

The discrete-time state equations for this system are then

xk+ 1) [0.6227 0.3606] [xl(k):l . [0.02516]u(k)
[xz(k + 1)] - [0.09016 0.8526 | | x,(k) 0.1150
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2. Jordan (diagonal) Canonical Form

L3 L%rltrl A%Wis bhs maaw sav— = -

We shall be concerﬁed with systems specified as a z-domain transfer
function of the form
dz2t+d,_z" '+ - +dy  y(2) (6.9.1)

H(Z) B ?;” + a,. 2 LR - H(Z)
y(z) bn—lznul e o bO
=—= = 6.9.5
H(Z) M(Z) d?! i "+ an—lz"_l 4+ e+ a, ( 9 )

The d, term represents a direct feedforward of the input sequence to the
output sequence.

If the poles of the transfer function (6.9.5) are known, expression (6.9.5)
can be written as

b"_lz"_l + et + bo
(z =p)z —p2) (- p)

where we shall assume that all the p; are distinct. Now let us make a partial
fraction expansion of the second term of (6.9.6) to yield

H(z) = d, +

(6.9.6)

A A
Hz) =d, + ——+ -+ + —= (6.9.7)
Z— pl zZ — pn
where the coefficients are given by the Heaviside method as
A; = lim[(z — p)H(z)] i=1,2,...,n (6.9.8)
T—=p

Let one of the terms of (6.9.7) be a transfer function between the input
sequence and the ith-state variable

Wz _ 1
77 Ry i=1,2,...,n (6.9.9)

x(k + 1) = px;(k) + u(k) i=1,2,...,n (6.9.10)
Then from Fig. 6.4 or expression (6.9.7), the output sequence is given by

y(k) = dyu(k) + Ay (k) + - - - + Ax, (k) (6.9.11)
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dy
+m KI(Z)
\‘L
Py ™
: +y1+
u(z) E Y(Z}
L+}—-—
X (2)
+ e ' An
+
pn
The matrix forms of equations (6.9.10) and (6.9.11) are
xk + 1) I:; 0 0 x,(k)
ak+n | |7 |
x,(k + 1) o | Leo
=
1
+| . |uk) (6.9.12)
1
and
x,(k)
xa(k).
yiky = [Ay A, -+ A)l . |+ duu(k) (6.9.13)
x"(k)
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Let us use an example to illustrate this:

Example 6.12. Find the parallel realization of the following transfer func-
tion:
22+ 2z +1
H(z)_zz+ﬁz+6

Long division of the transfer function yields

-3z -5

= + —
H(z) ! z° + 52+ 6

Let us make a partial fraction expansion of the second term to yield

1 —4

H =1+ +
(2) z+ 2 z+3

The state-variable form will be, from relations (6.9.12) and (6.9.13),

xk+ 1] [-2  0][xk 1
|:x2(k + 1)] - [ 0 —3][xz(k)] * [1]”(k)

with an output relation

1(k
(k) = [1 w][i Eki] + u(k)
& 4
+ 4 x(2) + b y(z)
o P e
+ 1+
ulz) -
(2)
+ i 9 |
+
3 |

Page 6



4.15 Overview of Digital State Space Control  (last updated: Apr 2018)

3. Controllable Canonical Form

The controllable canonical form is sometimes also referred to as direct
programming, although this should not be confused with what will be
referred to as the direct form. We shall be concerned with transfer functions
with numerators of lower order than denominators (otherwise, perform
long division and form a feedforward of the input sequence). The transfer
function of interest is given, after possible long division, to be

bpy2 by ¥

H(z) = = 6.9.2
) "+ a, 12"+ o+ ag " u(z) ( i
Let us define an intermediate variable w(z) such that
1
e = (6.9.21)
wz) z"+a,_z"'+ -+ a

and thus
y(@) = (b 2" 4 - - -+ bo)w(2) + du(z) (6.9.22)
Inverting (6.9.21) we get an nth-order difference equation
wk + n) +a, wk +n —1) + -+« + aw(k) = u(k) (6.9.23)
Inversion of (6.9.22) yields an output equation
yk) = b,_yw(k + n — 1) + - - - + bgw(k) + d,u(k)

Define the state variables as
x,(k) = w(k)
(k) = wk + 1) = xy(k + 1)
x5(k) = wlk + 2) = x(k + 1)
. (6.9.24)

x,(k) = wk +n — 1) = x,_,(k + 1)
Substitution of relations (6.9.24) into expression (6.9.23) gives
xn(k + ]) = _an—lxrx(k) - an—2xn—l(k)
— o0 = agxy(k) + u(k) (6.9.25)

with the other (n — 1) state equations defined by (6.9.24). The output
relation becomes

y(k) = bu—‘]xr:(k) + bn—?.xn—l(k) (6926)
+ - -+ boxy(k) + d,u(k)
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The matrix form of this representation is

[ x,(k + 1)—‘ 0 1 0 cee 0 —| [~ x,(k) |
Xk + 1) | 0 0 1 s 0 x,(k)
0 1
L xk+1) | [—a —a —a o —au [ xR
-0
0
+ | ¢ (u(k)
| 1]
(6.9.27)
with an output of
x,(k)
) x,(k)
y(k) == [bﬂ bn—l} : 2z duu(k) (6928)
x,(k)
ot d,
s bn]
- hn-z
b
uz)| + - Xn r x;__,;ll- X3 = xl(z)__: o] y(z)
+
+ -an-! =t
" e
-2, =
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Example 6.14. Consider the transfer function of Example 6.12 when long
division has been performed; it is of the form

-3z -5

The state representation is given by inspection
xi(k + 1) = x(k)
and from the denominator
x(k + 1) = —=5x,(k) — 6x,(k) + u(k)

or in matrix form,

x(k + 1] 0  1][x(k) 0
[xz(k + 1)] - [—6 —S]LZ(k)] " [1]“(")

_r_e _al®®]
yk) = [-5 Sl[xz(k)_]- + u(k)
= ]
- 3
w2 | + L e x,(2) % S 0
2 — z - - ~
+
-5 |
6 |

4. Observable Canonical Form

The observable canonical form is sometimes referred to in the literature
as the direct form. We start this discussion with the following form of the
transfer function:

d, +d, z7' + -+ -+ dyz™"
= = = 6.9.29
H(z) 1+a,_7z7 4+ + apz™ (6329
Let us define the state variables as follows:
Xk + 1) = —a,_y(k) + d,_u(k) + x(k) (a)
x(k + 1) = —a,_,y(k) + d,_ju(k) + x3(k) (b)
. . (6.9.30)
x.(k + 1) = —agy(k) + dou(k) (n)
where
y(k) = x,(k) + du(k) (6.9.31)

Expression (6.9.31) could be substituted into expressions (6.9.30) to give
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the following state equations:

xl(k t 1) = _an—lxl(k) + x?.(k) + (dn—l - an--ldn)u(k)
x2(k + 1) = _ﬂn—zxx(k) + xS(k) ;o (dn—2 - an—Zdn)u(k)
: (6.9.32)
Xk + 1) = —aoxy(k) + (do — aod,)u(k)
To verify the validity of this representation, let us substitute relations
(6.9.30) successively into (6.9.31). Substitute the first relation of (6.9.30)
into (6.9.31) to give

yk) = —a,_yu(k — 1) + d,_qu(k — 1) (6.9.33)
+ xo(k — 1) + d,u(k)

Then substitute the second to give

y(k) = —a,_1ytk = 1) + d,_qu(k — 1) — a,_,y(k — 2) (6.9.34)
+ dy_u(k — 2) + xy(k — 2) + du(k)

and after substitution of the last of the state equations, the resulting form
is

y(k) = —2 a,_y(k — i) + Z d,_u(k —i)  (6.9.35)

which is a difference equation which if z-transformed will give the transfer

function of (6.9.29). The matrix form of the state-variable representation
of (6.9.32) is

x(k + 1) —8yq 1 0 -+ 07 x1(K)
Xz(k + 1) ""an_'z U 1 xz(k)
: . .
x,(k + 1) —ag 0 -+ 0llx
dn—l - d,_14,
dn—2 - an --?.du
n : u(k) (6.9.36)
dy — ayd,

with an output expression
x,(k)

' x,(k)
yky=[1 0 --- 0] : + d,u(k) (6.9.37)

x,(k)
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Example 6.15. Consider the transfer function of the previous examples:

24 Z+T 142t b2
224+ 52+6 1+5271+ 6272

H(z) =

The state-variable form can be given by inspection to be

[xl(k + 1)] _ -[_5 1][;:](;«)] . [:3]u(k)
x(k + 1) | -6 0] xy(k) 5

u(z)
¥ ] i
| 2 |
+ z 1 X3 (Z)+ " 1 XI(Z) b2 Y@F
s N -
-6 e
\ |

Figure 6.11. Observable canonical realization of Example 6.13.

~ with the output relation

yk) = x,(k) + u(k)
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5. Composite control system

General block diagram of a discretized continuous plant, being controlled by a
digital controller.

Continuous-Time Dynamics, Sampler and Zero-Order Hold
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Discrete-Time Controller

General block diagram of using state feedback to control a linear discrete system:

Qi’ B i s Delay X
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Example of a complete state feedback control system:

+77 N |
W/
=

05 |
u * x4(t) x9(k)
k_[7or[ M. o5 | ot 2+ A2
I% 4 T
075 |=
3,685 =
2248 |

Figure 8.2. Complete state feedback control system.

But in practice, there are problems:

Often in a large system it is unfeasible to measure all the state variables,
while sometimes we can only measure a few or a linear combination of

the states. For feedback control we would like to be able to reconstruct
the state variables from the measured variables.

An alternative approach is that of estimating the state based on meas-
urements that are a linear combination of the states and then generating
the control effort based on the estimated states. We shall assume that at
best only some of the states are measured directly. We want to design a
state estimator or observer (Luenberger, 1964) which when given a se-
quence y, and the input u, reconstructs an estimate of the x, sequence.
An observer or state estimator is another dynamic system that has inputs
u; and y,, the output of which is an estimate of x, which we shall call )

Uy B L | Delay |—Xeef C RIS

Figure 8.4. Discrete linear system.
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Uy —|—~ Xy X ;
= B oy e Delay - ¢ P

Open-Loop Observer

In the scheme proposed above, the state was reconstructed without
regard to the measurement sequence y,. Surely we can devise a scheme
that will do a better job by employing the measurements in the estimation

task.

uk +
B Delay o c Ye
+

A 3 i\k

i
5 1+ !
E - Delay C A—:-() i
: Yk !
a ke g
i € | ;

Asymptotic Estimator

Figure 8.6. Asymptotic prediction estimator.
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uy + X Yi
B Delay Cc
O

-y

P
F 3 Delay <>+ K -—(5
+ =

Yx

Figure 8.7. Feedback-controlled plant using the estimated state.

Figure 8.11. Complete estimated state feedback control system for thermal plant.

- END ---
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