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1. Control system design specifications

Time domain specification
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Figure 3.18. Step response of a high-performance control system.

P: Percentage overshoot
Tp: Peak time

Ts:  Settling time

Tr: Rise time

ess: Steady state error

Frequency domain specification
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Figure 3.20. Typical high-performance control system frequency response.
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M(ejmT) = M(Z)‘z=e‘i‘“7‘ (371)

A plot of [M(e/")| for a typical high-performance control system is given

in Fig. 3.20. It is common to specify quantitatively the desired properties
of this magnitude function.

Commonly specified quantities are indicated in Fig. 3.20 and are:

1. System bandwidth BW
2. Resonant peak gain M,,
3. Peak frequency w,,

Gain margin and phase margin of a system

=

= 0

S \ Gy

Sy 1

S -2 i

5 |

2.

S | | | . |
01 02 05 1 2 5 10

W, 1/8

3 | \

& |

A |

= -180

[a W

jW

2

—

=

) . ! ‘ '
0.1 02 0.5 1 2 5 10

o, /s

The general control law to be implemented by the digital controller is:

u(k) = ae(k) + a,_e(k =1) + - - - + aelk —n) (341
+ b,k — 1) + - + bou(k — n)

The corresponding transfer function can be written in z-domain as:

D(z) = a,z" + a,_;z" '+ - - + a,
Zn - bn_lzn_l Tt bIZ — bO

(3.4.2)
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Elementary z-domain design considerations

We have shown that _a continuous-time plant driven by a zero-order
hold and followed by an output sampler can be represented by a discrete
transfer function G(z). The process of conventional digital control system
design amounts to the synthesis of the control algorithm, reflected in the
compensator transfer function D(z), to yield acceptable closed-loop dy-
namics or error character.

In Section 3.3 we have shown that the plant pole locations in the

z-plane are related to those of the continuous-time plant in the s-plane by
z; = el (3.8.1)

Ft

In the design process we are often interested in systems with complex-
conjugate poles whose s-plane locations are given by the roots of the
quadratic equation

2 + 2w, + 02 =0 (3.8.2)

where w, is the undamped natural frequency and [ is the damping ratio.
For { < 1 these roots are given by the quadratic formula to be

S1,2 = _g(l)n =+ j("‘)n \/ 1 - CZ (3.8.3)

which are illustrated in Fig. 3.23. The z-plane images of such s-plane poles
are given by the mapping (3.8.1), or

Zi4 = e Lo, T jw, V122 (3.8.4)
jO)
X jon/i-g2
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Figure 3.23. Complex-conjugate poles in the s-plane with a line of constant damp-

ing ratio shown.
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In the s-plane we are commonly interested in fixing the parameter { so as
to control overshoot and settling time of the closed-loop control system.
Lines of constant damping ratio { in the s-plane are radial lines in the left
half of the s-plane, as illustrated in Fig. 3.23. The angle B is related to the
damping ratio by

{ = cos B (3.8.5)

The radial location of the poles in the z-plane is given by (3.8.4) to be
R = e &l (3.8.6)

and the angular location is given to be
= w,IV1 - (7 (3.8.7)

Now if we solve (3.8.7) for w, T and substitute intp (3.8.6), we get the
radial pole location as a function of the angular location and the parameter

£, s0
-0
R = exp(___1 i’;‘ C2> (3.8.8)

This is the equation of a logarithmic spiral, the “tightness” of which is
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Figure 3.24. Constant damping ratio ({) loci in the z-plane.

controlled by the parameter {. These loci for various values of { are shown
in Fig. 3.24.
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Exan?ple 3:6. Consider the thermal control system considered in Example
3.3, in which the transfer function from the input of the zero-order hold

to the sampler output was found to be
G(z) = 0.025(z + 0.816) _ Tz
(z — 0.952)(z — 0.528)  U(z)

For a pro_portional controller D(z) = K, the closed-loop characteristic
equation 18

(z — 0.952)(z — 0.528) + K(0.025)(z + 0.816) = 0

On expanding and combining like terms in z, the result is

22 — z(1.48 — 0.025K) + (0.5026 + 0.0204K) = 0

The closed-loop pole locations are then

21, = 0.74 — 0.0125K = V{074 = 0.0125K)? — (0.5026 + 0.0204K)

and if we consider only the complex roots,
z,, = 0.74 — 0.0125K * j\/0.5026 + 0.204K — (0.74 — 0.0125K)*

For a pole location on the unit circle |z = 1, or

1 = (0.74 — 0.0125K)? + (0.5026 + 0.0204K) — (0.74 — 0.0125K)’
or
1 = 0.5026 + 0.020K

Then the critical value of the gain parameter is
K = 24.38

The root locus for this system is shown in Fig. 3.25, with several values of
the parameter K being given. For a damping ratio of about (.7, it appears
that the value of K is 2.5. The proportional control algorithm corresponding
to this set of closed-loop locations is then given by

w(k) = 2.5[r(k) — Ty(k)] = 2.5e(k)

We have, in fact, adjusted the damping ratio such that there would
not be excessive overshoot according to Fig. 3.21.
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Step Response, Ty(t)

15

10
. ——-;-;._ .-....C‘...-._..u.-'-"‘ ==

Control Effort, u(t)

Time t, sec.

Figure 3.26. Control : )
system. effort and step response of proportionally controlled thermal

Effect of disturbance on the closed loop system

Let us consider now the system of Fig. 3.27, in which the reference
input is zero, which makes this system a regulator. The system is, however,
subject to a disturbance W(s) which may enter the control loop directly or
through some dynamics represented by transfer function G,(s). A discrete-
time control algorithm is represented by transfer function D(z), while the
continuous-time plant dynamics are represented by G,(s). The discrete-
time transfer function between the discrete controller and the sampler
output will be represented by G(z) and can be found by the methods of
Sectjon 3.2. The output of this system ¥(z) can be thought of as being
composed of two parts, one due to U(z) and the other due to W(s). Since
the system is linear, the principle of superposition is applicable and the
output Y(z) is '

Y(z) = G(z)U(z) + ZL7} [GL()G,(s)W(s)] (3.9.1)
But the control effort U(z) is given for zero reference input as
U(z) = —D(2)Y(z) (3.9.2)

and substitution of this into (3.9.1) gives
Y(z) = —G(z)D(2)Y(z) + EL* [G1(s)G(s)W(s)] (3.9.3)
and solution for the z-domain output yields
2L [Go(5)G ()W)
1 + G(z)D(z)

If the time-domain response sequence is desired, this must be inverted to
yield the y(k) sequence. If, however, only the final value of the output

(3.9.4)

Y(z) =
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Figure 3.27. Closed-loop digital control system with cg;{;inuous disturbance.

sequence is desired to a step disturbance, the final value theorem is ap-
plicable. These concepts are best illustrated by means of an example.

Example 3.7. Consider now the step disturbance of the first-order plant
with transfer function

1
@) =5

with a sampling interval of 7 = 0.2 s. The transfer function G(z) was given
in Examples 3.1 and 3.5 to be

0.1813
G = R

The step disturbance of magnitude A is

A
W(s) = "
The disturbance input transfer function is unity or
7 Gyfs) = 1
and for a proportional controller the transfer function is
D(z) = K

The z-domain response is given by expression (3.9.4) to be
FEL1[A
Y(z) L1 [Als(s + 1)]
1 + K(0.1813)/(z — 0.8187)
and carrying out the operations indicated in the numerator gives
Alzl(z — 1)] — z/(z — 0.8187)
1 + K(0.1813)/(z — 0.8187)

Rationalizing this fraction yields

Y(z) =

A(0.1813)z
(z — D[(z ~ 0.8187) + K(0.1813)]

Y(z) =
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We know from Example 3.5 that the closed-loop pole position is controlled
by selection of the gain parameter K. The steady-state error due to the

step disturbance can be calculated by the application of the final value
theorem, or ;

J(®) = lim A(0.1813)
1 (z — 0.8187) + K(0.1813)

and carrying out the indicated operations we get

Y*) =17k

and hence the larger the value of controller gain K, the smaller the steady-
state error. There is, however, an upper limit on gain K due to the instability

PID direct digital control algorithm

In the study of continuous-time control systems it was found that if pro-
portional control is employed, a steady-state error was necessary in order
to have a steady-state output. It was also found that if an integrator replaces
the proportional controller, the steady-state error can be made zero for a
steady output. Often, the introduction of the integrator into the loop will
create instability or, at best, poor dynamic character, which manifests itself
as overshoot and excessive ringing in the output. Several compromises are
possible, one of which uses an actuating signal that has one component
proportional to the error signal and the other proportional to the integral
of the error. This combination reduces the steady-state error to zero and
often yields acceptable dynamics. If further improvement in dynamics is
required, a differentiator that is sensitive to error rate can be included in
parallel with the other two devices. This continuous-time control scheme
is shown in Fig. 4.1 with a continuous-time plant. The time-domain relation
for the controller is

! d
(@) = Ke(t) + K, fo edt + Kdi (4.2.1)
The associated s-domain transfer function for the controller is given by
Laplace transformation of (4.2.1) to yield
' U Ks? + K5 + K,
D(S) — (S) — & P
E(s) s

where the choice of the constants will determine the system dynamics.

(4.2.2)

Page 9



4.12 — Digital Controller Design (last updated: Feb 2018)
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Figure 4.1. Proportional plus integral plus derivative (PID) control.

Since this technique has proven so useful for continuous-time control
systems, it is desirable to develop a digital control algorithm that will be
of similar character to the continuous-time scheme given above. We shall
approximate the integral with trapezoidal integration and the derivative
with a backward difference equation, or

1 1
U, = erk + KlTIiE, (60 + 61) + 5 (el + 62) +o (423)

1 . K
+ "2_(61(—1 + ek)] + _7_:1 (€r — €r 1)

and the algorithm for the previous step in time is written with the appro-
priate shift in subscripts, or

1
Up_1 : erk—l + K1T|:§ (60 + el) + e

(4.2.4)
1 K
+ 5(6,'(—2 + ek~1)] + 7(1 (er-1 — ex_2)
Subtraction of (4.2.4) from (4.2.3) yields
Up — Up_y = Kp(ek —€_q) t N (€x-1 + €x) (4'.2.5)
K
+ “““fi (ex — 2€4_1 + €5_5)
or combining like terms yields
KT Kd>
U = Upy + | K, + — + =2 e
k k 1 ( P 2 T k (4_2.6)
K.T 2K, K
)
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Which 1s the direct d?gital control algorithm. By taking the z-transform of
the difference equation [Eq. (4.2.6)] we can determine the compensator

transfer function which will perform the i i
o proportional plus int
derivative (PID) control function: P plus Integral plus

Dy = Y& ot Bzl 27 ez 4 Bz 4y

E(z) 1= z-1 Tz - D (4.2.7)
where
o« =K, + K;T + KT" (4.2.8)
p = %Z - K, - 2—? (4.2.9)
and
v = —I;—d (4.2.10)

It is interesting to note that the transfer function of (4.2.7) has a
quadratic numerator that may be chosen such as to cancel two slow, trou-
blesome poles of a plant. As long as those poles are interior to the unit
circle, the cancellation need not be exact and the resultant root-locus branches
will contribute little to the closed-loop response because of the zeros of
the closed-loop transfer function being coincident with the zeros of the
controller. - ‘

If only proportional plus integral action is required, it is a simple matter
to let K, be zero, which yields a simplified transfer function for the com-
pensator: '

D(z) = gg = a;jlg (4.2.11)
where
a =K, + KQ—T (4.2.12)
and
B = - K, (42.13)
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Example 4.1

Example 4.1. Consider the thermal system of Exqmples 3.3 and 3.6, for
which we would like to design a proportional plus integral (PI) controller
so we will have zero steady-state error to a step input. The plant transfer

function is
0.025(z + 0.816)
(z — 0.952)(z — 0.528)

R(z) + Bz)_|oz+f| UG _| _ 0025(z +0816) Ty (z)
_(; z-1 (z - 0952)z - 0.528)

Figure 4.2. Proportional plus integral (PI) control of thermal plant.

G(z) =

We shall choose to locate the zero of the PI controller so as to cancel the
slow pole of the plant, so the compensator transfer function is

_az + B alz + Bla)

-1 z -1

where B/a = —0.952. The whole feedback system structure is shown in
Fig. 4.2, and the root-locus diagram for this example for variable controller
gain o is shown in Fig. 4.3.

A trial-and-error design gives a closed-loop damping ratio of =07
for a controller gain of a = 2.5. The resulting control algorithm is

Up = Uy + 2.5(e;, — 0.952¢,_,)

The step response and associated control effort for this system are given
in Fig. 4.4(a) and (b), respectively. It should be noted that due to the

Z-Plane

jim(z)

Unit Circle

o=25

_1\

Relz)

Figure 4.3. Root locus for PI control of the thermal system.
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(a)

Step Response, Ty(t)

Control Effort, ult)

0 2 4 6
Time, sec.

Figure 4.4. Step response (a) and control effort (b) for the PI control of the
thermal plant.

integral action the steady-state error is zero and that the step response 18
reasonable with an overshoot of 4%; however, because '[}.16 root loc_us was
shifted to the right, the response is slightly slower than in proportionally
controlled cases. To have both fast response and zero steady-state error a
higher-order compensator will be necessary.

Zieqgler Nichols tuning

The technique is based on experimental evaluation of several param-
eters associated with the step response of the plant to be controlled. The
first task is to evaluate the plant response to a sudden constant change in
the variable to be used as the control effort. Such an experimental response
is illustrated in Fig. 4.5.

From this step response it is necessary to find two quantities. The first
is R, the slope of the response curve at the inflection point, which is an
indication of the speed of response. The second is the time L, which is a

measure of the lag of the plant. For a PI controller the tuning strategy
relates K, and K, to the values of R and L as
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K, = R (4.3.1)
and
K - 1 K = 0.272
" 33L°7  RL? (432)
If the PID control strategy is chosen, the tuning equations are
1.2
K, = RL (4.3.3)
1 0.6
K = 2L K, = RI (4.3.4)
2
=
o
&,
5]
R R
o
]
& 1
L Time
Figure 4.5. Step response of a typical plant.
and
0.6
K, = 0.5LK, = 3 (4.3.5)

From these expressions it is possible to evaluate the parameters a, B, and
v of the controller.

Example

Example 4.2. Use the Ziegler—Nichols tuning strategy to design a PI
controller for the thermal plant of Example 4.1 for which the continuous-
time transfer function is

1 _ Ty(s)
2 + 275 + 0.5 Us)

G(s) =

The step response of this system is illustrated in Fig. 4.6.
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Temperature T (t)

[3=3

—_

10 . 20

Time, sec.

Figure 4.6. Step response of thermal plant.

Evaluation of the slope at the inflection point yields a slope of R = 0.37
and the lag parameter indicated is L. = 0.47 s. Calculation of K, and K;
yield K, = 5.175 and K; = 3.336. From these values and a sampling interval
of T = 0.25 s the two controller coefficients are @ = 5.592 and B =
—4.758. And thus the resultant controller is

5.592(z — 0.85)

D@z = z — 1

The associated control algorithm is

Temperature T, (kT)

u(k) = u(k — 1) + 5.592e(k) — 4.758e(k — 1)

T = 025 sec.
1 1 i
2 4 6

Time kT, sec.

Figure 4.7. Closed-loop step résponse of PI controlled thermal system with Ziegler—

Nichols tuning.



