3. Analysis of second order system

Consider a second order system

$$\frac{C(s)}{R(s)} = \frac{kb}{s^2 + as + b}$$

The denominator is quadratic in s.

System poles may be either real or complex.

System poles are complex if a2 - 4b < 0 and real if $a2 - 4b \ge 0$.

Rewrite the transfer function as:

$$\frac{C(s)}{R(s)} = \frac{k\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

where
$$\omega_n = \sqrt{b}$$
 = undamped natural frequency
$$\zeta = \frac{a}{2\omega_n} = \text{damping ratio}$$

System poles will be complex only if:

$$0 < \zeta < 1$$

- 1. Underdamped case $(0 < \zeta < 1)$
- 2. Critically damped case ($\zeta = 1$)
- 3. Overdamped case $(\zeta > 1)$

2.29 - Transient and Steady State Analysis (last updated: 02/2015)

For the under damped case $(0<\zeta<1)$

Characteristic equation:

$$\Delta(s) = s^2 + 2\zeta\omega_n s + \omega_n^2$$

System poles: $s = -\zeta \omega_n \pm j \sqrt{1 - \zeta^2} \omega_n$

Define $\phi = \cos^{-1} \zeta$ and $\beta = \sin \phi$ $= \sqrt{1 - \zeta^2}$

The unit step response is:

$$C(s) = \frac{k\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \bullet \frac{1}{s}$$

$$= \frac{k}{s} - \frac{k(s + \zeta\omega_n)}{(s + \zeta\omega_n)^2 + (\beta\omega_n)^2}$$

$$- \frac{k\zeta\omega_n}{(s + \zeta\omega_n)^2 + (\beta\omega_n)^2}$$

Taking the Laplace inverse transform:

$$c(t) = k - ke^{-\zeta\omega_n t} \cos \beta \omega_n t$$
$$-\frac{k\zeta e^{-\zeta\omega_n t}}{\beta} \sin \beta \omega_n t$$
$$= k - \frac{ke^{-\zeta\omega_n t}}{\beta} \sin(\beta \omega_n t + \phi)$$

Page 7

4. Transient Response

Definition of transient response specifications

- 1. Delay time *td*: Time required for the response to reach half the final value.
- 2. Rise time *tr*: Time required to rise from 10% to 90% (overdamped) and 0 to 100% (underdamped) of its final value.
- 3. Peak time *tp*: Time required to reach the first peak of the overshoot.
- 4. Maximum overshoot Mp: Occur at the peak time tp.
- 5. Settling time *ts*: Time required to reach and stay within a range about the final value of size specified by absolute percentage of final value. (usually 5% or 2%)