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1. Using difference equation to describe a system

e Analogue description: y(t) = F(x(t)). For example: y(t)= sin(x(t))

e [For discrete control, we no longer have a continuous time domain
function. Instead we have a series of numbers: 0, 1, 2, 3, 5,

e Let us consider a set of real numbers with index value Kk,
where k= (0, 1, 2, 3...).

For a transfer function with input u(k), and output y(k):

u(k) = fly(k), y(k = 1), ..., y(k — m),
ulk — 1), u(k —2),...,ulk - n)l (2.2.1)

Of course there are an infinite number of ways the n + m + 1 .Values on
the right side can be combined to form u(k), but for the majority of this
book we shall be interested only in the case where the right side involves
a linear combination of the measurements and past controls, or

w(k) = by_yu(k — 1) + -+ + boulk = n) + a,y(k)

+ am—ly(k - 1) +os F aoy(k - m) (2'22)
k: present
k-1: previous sample
ai, by: weighing factors

For example, if we want to integrate the function of curve below by rectangular
approximation:

x(k) = x(k — 1) + y(k = DT

y(t)
-~
)’(l) }/
k
y(k-1) i
y(l) y(?} y(3)
y(0) |
0 T 2T 3T (k-DT kT t
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2. z-transform of simple sequence

Assumptions:
e Only interesting in the positive time values (i.e. one-sided z-transform)

e There is some region of the complex z-plane where the series of F(z) will
converge to a limit value.

e z1isthe previous value, z2 is the previous previous value.
e Under the above assumptions, the z-transform is denoted by:
Fz) = Z[f(0)] = f0) + f(D)z 1 +f@)z72 + - -+

or

FG) = 2Uf0) = 3 =+

Example 1: unit step sequence

Consider the unit-step sequence of Fig. 2.2a. The function is defined as

0 k<0
u(kT) = {1 k=0 (2.3.3)

By application of the definition of the z-transform (2.3.2) and that of the
function (2.3.3) which defines the samples, we get

UG = 2ukD) = T2k =14 te L @3

It is clear that this series converges for |z| > 1, and a glance at a set of

u(kT)

18 --0-nO-mO--

©
(a) 0 T 2T 3T 4T t

ordinary math tables will give the limiting form of such a convergent geo-
metric series as

F[u(kT)] = z—z_—-]- for |z] > 1 (2.3.5)
which can easily be verified by long division. The requirement that |z| >
1 defines what is known as the region of convergence, which in this case
is the area of the complex z-plane exterior to the unit circle.
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Example 2: exponential function

f(kT)

.C
(b) 0 T 2T 3T 4T t

Consider now the sampled exponential function illustrated in Fig. 2.2b.
The sequence is defined by

" 0 k<0
f(k) = f(k:r) = {e—akT k = 0 (2‘3‘6)
Substitution of (2.3.6) into (2.3.3) yields
Fle—okT] = E (e-Tz~ 1)k (2.3.?)
k=0

and from the previous transform the limit of the series is

Fle—okT] = %‘; for |z| > e~T (2.3.8)
zZ— e .
Example 3: cosine function
f(kT)
1 . )
T\ 2T 3T 4T T
-Gt T u

) 0 T L S OST ot

Consider the sampled cosine function of radian frequency () which is shown
in Fig. 2.2¢c. The sequence is defined by

[0 =160 = (O ior KZ0 Qa1

‘The cosine function can be rewritten using the Euler identity as
: 1. . o
cos kQT = 3 (e/*0T 4 —ikaT) _ (2.3.14)

Since the z-transform of a sum is the sum of individual z-transforms, the
result of (2.3.8) can be used to give

1 z z
¥[cos kQT] = > (z —ar t 7T e—fﬂT) (2.3.15)

and finding a common denominator yields

z2 — zcos QT
—z:2cos QT + 1

%[eos kQT] = (2.3.16)

The region of convergence is the region of the z-plane exterior to the unit
circle. The sampled sine function will be left as an exercise for the reader
but is given in Table 2.1.
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Example 4: impulse function
Consider a sequence 8(k) that is defined by

1 k=20
3(k) = {0 k40 (2.3.17)
Using the definition of (2.3.2) the result is
FBk)] =1 (2.3.18)
In a similar fashion we can show that a delayed impulse function defined
by '
' 0 k+#n
3k — n) = {1 k=n>0 (2.3.19)
has a z-transform
sk — n)] =z " (2.3.20)

Example 5: ramp function

The sampled ramp function is defined by
ftky = kT k=0,1,2,... (2.3.21)
and application of definition (2.3.2) yields

FkT) = T D, kz~* (2.3.22)
k=0
Again consulting a table of mathematical functions, the limit of the series
is
- Tz -
FkT] = (_:»_-'—:“]_)z for |z| > 1 (2.3.23)

Table2.1. Short Table of z-Transforms of Sampled Continuous Functions

f0),1=0 LIf0] F(z) =%[f(kT)] =%[f(k)]
u() 1 z
N z — 1
f 1 Tz
5 (z — 1)
e 1 z
s+ a z — e™9T
cos (Ut s z> — (cos 1T)z
s+ 0F z2 = (2cos QT)z + 1
sin £ Q (sin 27)z
s+ 02 22— (2cos QT)z + 1

Page 5



4.10 — Linear Difference Equations and the Z Transform (last updated: Jan 2018)

3. Useful theorems associated with the z- transform

It has been our experience that certain theorems were quite useful in the
theory of the Laplace transform, and hence a few necessary and very useful
theorems associated with the z-transforms will now be developed.

Linearity

Theorem 2.1. Lincarity. We shall show that the z-transform is a linear
transformation which implies that

Aaf(k)] = oZ[f(K)] = oF(2) (2.4.1)

and
Ilaf(k) + Bgk)] = aF(z) + BG(2) (2.4.2)

Delay Theorem (shift theorem)

Theorem 2.2. Delay Theorem. The z-transform of a delayed sequence
shifted one step to the right is given by

F[f(k — 1)] = z 'F(z) (2.4.5)

Advance Theorem (shift theorem)

Theorem 2.3. Advance Theorem. The z-transform of a sequence that
has been shifted one step to the left is

%[f(k + 1)] = zF(z) — zf(0) (2.4.10)

General Exponential Function

%[r¥] = f for |z| < |r| (2.3.11)
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4. Inversion of the z- transform

Method 1: By long division
This is best to illustrate by an example
Example 2.3. Find the inverse sequence for the following function:
22+ z
F(Z):zz—3z+4
Multiplication by z~2 in numerator and denominator gives

3 1+ 2z
Fz) = 1 — 3z + 4277

Now carry out formal long division to yield

1+ 4z 4+ 8272
1-3z71+4z7%1 + 27!
1 — 3z ' 44277
4z71 — 4277
4z-1 — 12272 + 1627
822 — 16z 3
8z-2 — 24773 + 32z7*
8z 3 — 32z74

Now upon examination of the coefficients of the infinite series answer, the
sequence is

£(0) = 1
fQ) = 4
1@ =8

Method 2: By partial fraction expansion
This is best to illustrate by an example (for case with distinct real roots)

Example 2.4. Consider the following z-domair: function:

~ z> + z
F&) = T 06z — oG = 1)

Find the partial fraction expansion and invert the resulting transform. The
expansion will be of the form
Az Ayz Asz
- -
z—-06 z-08 =z-1
where the coefficients are given by (2.6.5). The constant term in the ex-

pansion has been omitted bcause there is not a constant term in the nu-
merator polynomial of the original function, or

F(z) =

Page 7



4.10 — Linear Difference Equations and the Z Transform (last updated: Jan 2018)

z+1 1.6

4 =0 08)(z — D], o (-02)(—04) _ 20
_ z+1 B 1.8 o
LT 00GE D], 09(-02) C P

and

_ z+1
" (z - 0.6)(z — 0.8)

2

A, T T
-1 (0902

25

So upon inversion of the transform,

f(k) = 20(0.6)% — 45(0.8)% + 25

5. Solving linear difference equations with the z- transform

By employing the delay and advance theorems (Theorems 2.2 and 2.3)
and the transforms of known functions, we are now prepared to solve
linear constant-coefficient difference equations, but first let us write down
the results of these valuable theorems:

Theorem?2.2: Z[f(k —n)] =z""F(z) (2.7.1)
Theorem2.3: %[f(k + n)] = z"F(z)
—z"f(0) — - —zf(n = 1) (2.7.2)

The technique is similar to that of using Laplace transforms and is best
illustrated by some example problems, which follow.

Example

Example 2.7. Consider the same example as before with starting condition
x(0) = 2 and an inhomogeneous term on the right side, or

x(k +1) — 0.8x(k) = 1
Taking the z-transform yields
zX(z) — 2z — 0.8X(2) = —;i—]
Solving for X(z) yields
2z z
+
z—-08 (z-1(z - 0.8

We can readily invert the first term as in Example 2.6, but we must now
expand the second term as

X(z) =

z Az + Bz
(z-1)(z~-08) z-1 =z-0.8
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Solving for A and B yields

z — 1 Z
A - =
z (z - 1)z - 08),_, >

and
z — 0.8
z (z — 1)(z — 0.8)

So the z-domain solution is

B =

2z 5z 5z
X(z) = + -
@ =T—0st7-1 7_03

and the total solution is

x(k) = —3(0.8)% + 5

Z- domain transfer function

Consider now a general discrete-time system described by the linear constant-
coefficient difference equation

vk + n) + a,_yk + n — 1) + - -« + ay(k + 1) + agy(k)
=d, ulk +n) +d,_juk + n - 1) +--- + dou(k) (2.8.1)

If we now take the a transform employing the advance theorem (Theorem
2.3) and ignoring the starting conditions y(0), . . ., y(n — 1) and u(0),
suln — 1), we get

(z"+ a, 2"V 4+ - az + ay)Y(2)

= (dyz" + - + diz + d)U(z)  (2.82).

We can solve for the ratio of output Y(z) to the input U(z) to give

Y(z) d,z" + -+ diz + dy
U(z) 2zt + a,_12"" '+ -+ + a;z + aq

H(z) = (2.8.3)

which is the z-domain transfer function.
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7. The z-plane pole locations

First let us consider a z-domain function of the form

Az
z-p
where p is a real number or a real pole of the function F(z); the associated
time-domain sequence is '
| fk) = Ap* k>0 (2.9.2)

Clearly, if p < —1, the solution will oscillate and increase in magnitude
for large k. If —1 < p < 0, the solution will decay in an oscillatory fashion,
and if 0 < p < 1, it will decay in an exponential manner as k becomes
large. Also, if p > 1, the sequence will grow with an exponential nature.

F(z) =

(2.9.1)

jIm(z) z Plane

i UNBOUNDED

Unit Circle

Figure 2.4. Regions of poles for bounded and unbounded sequences in the
z-plane.

Now let us consider a function with a quadratic denominator of the
form

N(z)

-F(z)zzz“bz+c

(2.9.3)

The denominator has complex roots p and p*, and hence a partial fraction
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expansion of the form of (2.9.4) can be made to yield
Az A*
_|_
z—p z-—p
where the asterisk denotes the complex conjugate. We can write the com-
plex pole in polar form as

F(z) =

(2.9.4)

*

p = Re/® (2.9.5)
and the conjugate pole as _
p* = Re /® (2.9.6)
The coefficients A and A* are also complex conjugates, and we can let
A=a+jB (2.9.7)

If we substitute (2.9.5), (2.9.6), and (2.9.7) into (2.9.4) and invert the z-
transforms, we get

f(k) = (a + jB)R*e*® + (a — jB)R*e /*® (2.9.8)
We may rewrite this as . '
fk) = R¥a(e/® + e7/0) + jB(e/" — e/ )] (2.9.9)
and upon employing the Euler identities we get
f(k) = R*(2a cos k& — 2 sin k6) (2.9.10)

If we now examine this, we see that the sine and cosine functions are
bounded by plus and minus unity, and hence the R* factor determines the
asymptotic nature of the discrete-time sequence. If R is greater than unity,
the sequence will be unbounded for large k, and if R is less than unity (but
still positive), the sequence will converge to zero for large k.

R
| T3

‘e "t
—0

]

\

([T

bty
IR
.

i

Unit Circle

Figure 2.5. Pole locations and associated time-domain sequences.
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