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A fuzzy position controller for linear
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Abstract. A fuzzy position controller is employed for the linear switched reluctance motor. Performance comparison be-
tween the fuzzy controller and a proportional-differential (PD) controller is carried out. Under the PD controller, the absolute
steady-state error is 44.5 ∼ 211.5 µm under normal condition and 1157–1212 µm under sustained time-variant disturbance
circumstance, respectively. The absolute steady-state error of 3 µm and 9 µm can be achieved under the fuzzy controller in
the normal and sustained disturbed circumstance. Experimental results demonstrate that the position tracking performance
from the proposed algorithm is superior to the conventional PD control strategy, both in normal circumstance and disturbance
environment.
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1. Introduction

The linear switched reluctance motor (LSRM) has a simple structure. It is rugged, reliable and low in
cost. It is also suitable for operating in hostile environment. Therefore, the switched reluctance machine
is an attractive candidate for position or velocity control applications [1]. Compared with rotary motor
coupled with rotary-to-linear mechanical translator, a LSRM has a quicker response, a higher sensitivity,
and a higher tracking precision [2]. Compared to the direct drive permanent magnet linear synchronous
motor, the LSRM has a simpler and rugged structure with a lower system cost, and it does not involve
the complicated arrangement of windings or permanent magnets [1]. However, a LSRM is difficult to
control and its output has a higher force ripple due to its complexity and nonlinearity of the LSRM
magnetic circuit. In recent years, with the development of advanced modeling and control methods, the
LSRM has attracted much attention in the high-performance motion control area, and there have been re-
ported on different aspects of LSRM. The design schemes and analysis for LSRM are presented in [2,3].
In [4], a proportional-integral (PI) controller is employed to current control for LSRM. Speed control
for LSRMs is discussed in [5]. A passivity-based control (PBC) algorithm is proposed for the position
tracking system of LSRM in [6]. In [7], it proposes a simple yet effective position controller that uses a
lookup table to linearize the relationship among phase force, current and position, and a plug-in compen-
sator to improve system robustness. In [8], neural networks are used to model the nonlinear functions
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for H∞ control problems. Article [9] employs a two-degree-of-freedom controller to achieve a better
tracking performance in frequency domain. These control methods can be successfully implemented on
the LSRMs based on their static models. However, with the proposed algorithms above, controller pa-
rameters can not be adjusted online to counteract system uncertainties and external load disturbances,
since a static machine model is considered.

A self-tuning regulator (STR) and adaptive control methods [10–12] can be proposed to combat the
difficulties and uncertain control behaviors of the LSRM according to dynamic models of LSRMs.
Though STR or adaptive control can achieve higher control performance, when the machine is under
disturbances, the STR or adaptive controller requires a system identification process to calculate model
parameters in real time [10]. The converging time for the identification process usually takes for 2–5 sec-
onds for settling, depending on different LSRMs models and reference signals. In addition, the control
system must be consistently excited to ensure the parameters to converge [11]. Therefore, a traditional
PID position controller should often be involved initially for the excitation and parameter identifica-
tion process [12]. Then it can be switched to the STR or adaptive control until all the above process is
accomplished.

Advanced position control algorithms often increase more calculation time and storage load of the
processor and sometimes, this may prevent the successful implementation onto a cost effective chip
for real-time industrial applications. Regarding to the aspects of easy implementation and effectiveness
of control methods, traditional PID controllers dominate more than 95% motion control applications
in industry. Since the algorithm solely aims at a static linear model, the control parameters cannot be
adjusted with the change of the control object after they are confirmed. Actually, the position control of
a LSRM is nonlinear, time-varying, and sometime involved with dynamic interferences, etc. Therefore,
parameters of the entire control structure should change with the environment and the control object.
Fuzzy control imitates human control experiences rather than relies on the model of control object [13].
The algorithm has good robustness and strong ability for fault tolerance. Thus, it is a better choice for this
nonlinearities and large disturbances. In this paper, a fuzzy control strategy is proposed for the LSRM
for position control.

The organization of this paper is as follows: construction and modeling of the LSRM are given in
Section 2, and the fuzzy PD control design is depicted in Section 3. Sections 4 and 5 present the experi-
mental results and the conclusions, respectively.

2. Construction and modeling of the LSRM

2.1. Configuration of LSRM

The schematic and appearance of the LSRM are shown in Fig. 1a and b, respectively. The movers are
composed of windings and iron cores. A set of three-phase movers are mounted on an aluminum board.
The three phases have the same dimensions and ratings. The moving platform consists of three movers
and the aluminum board, so that both of the total weight and inertia of the moving platform are low. The
magnetic paths are decoupled [14]. The stator track and the iron cores of the mover are laminated with
0.5-mm silicon-steel plates. A linear optical position encoder with the resolution of 1 µm is mounted
onto the LSRM stator track to record the motion profile of the moving platform and to feedback real-time
position information. The electrical and mechanical parameters of the LSRM are listed in Table 1.
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Table 1
Specifications of the LSRM

Parameter Value
Rated power 240 W
Mass of moving platform (M ) 1.5 kg
Mass of stator (Ms) 2 kg
Pole width (w1) 6 mm
Pole pitch (w2) 12 mm
Phase separation (g) 10 mm
Phase resistance (R) 2 ohm
Air gap length (z) 0.3 mm
Number of turns for each winding (N ) 160
Stator track width 25 mm

Fig. 1. Schematic (a) and picture (b) of the LSRM.

2.2. Modeling of LSRM

The electrical terminal for each phase can be characterized as the voltage balancing equation as fol-
lows [15],

uj = Rj · ij +
dλj(ij , x)

dt
, j = a, b, c (1)
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Table 2
FDF scheme

Position range Positive force command Negative force command
0 mm–2 mm fa = fe fc = fe ∗ t2c/(t2c + t2b), fb = fe ∗ t2b/(t2c + t2b)
2 mm–4 mm fa = fe ∗ t2a/(t2a + t2c), fc = fe ∗ t2c/(t2a + t2c) fb = fe
4 mm–6 mm fc = fe fb = fe ∗ t2b/(t2b + t2a), fa = fe ∗ t2a/(t2b + t2a)
6 mm–8 mm fc = fe ∗ t2c/(t2c + t2b), fb = fe ∗ t2b/(t2c + t2b) fa = fe
8 mm–10 mm fb = fe fa = fe ∗ t2a/(t2a + t2c), fc = fe ∗ t2c/(t2a + t2c)
10 mm–12 mm fb = fe ∗ t2b/(t2b + t2a), fa = fe ∗ t2a/(t2b + t2a) fc = fe

note: ta = sin(2π ∗ x/12 + π/3), tb = sin(2π ∗ x/12), tc = sin(2π ∗ x/12− π/3).

where Rj , uj and ij represent the resistance, terminal voltage and current of phase j, respectively. x is
displacement and λj(ij , x) denotes the phase flux-linkage of phase j. From the mechanical side,

fe = M · d
2x

dt2
+B · dx

dt
+ fl =

c∑
j=a

∂Wcoj(ij , x)

∂x
, j = a, b, c (2)

where fe is the generated electromagnetic force, fl,M andB are the external load force, mass of moving
platform and friction coefficient, respectively. Co-energy Wcoj(ij , x) can be represented as,

Wcoj(ij , x) =

∫ ij

0
λj(ij , x)dij =

∫ ij

0
Lj(ij , x) · ijdij , j = a, b, c (3)

It is clear that phase inductance Lj is a function respective to both phase current and displacement.
The phase propulsion force can be represented as,

fj(x, ij) =
∂Wcoj(ij , x)

∂x
|i=constant, j = a, b, c (4)

If the LSRM is operating under unsaturated region, the propulsion force for each phase can be denoted
as,

fj(x, ij) =
1

2
· dLj

dx
· i2j , j = a, b, c (5)

where fj is the generated electromagnetic force of phase j, dLj/dx is the inductance change rate of
phase j. Equation (5) indicates that the change rate of inductance respective to position and current are
the key factors for propulsion force outputs and variations. The propulsion force is given by the slope of
the inductance vs. motor position characteristic, and the propulsion force is proportional to the square of
the current [15].

From the above deductions, the LSRM has a highly nonlinear characteristic due to its nonlinear flux
behavior. Generally, the motor winding excitation scheme for LSRMs can be considered as a force
distribution function (FDF) and an approximated function of the inductance change rate and the scheme
of the driver can be shown in Fig. 2 [11]. FDF is used to compute the force for each phase according to
the position and the direction. The approximated function of inductance change rate is used to compute
the phase current according to the command force of phase and the position [11,12]. If the FDF and
the approximated function of inductance change rate are chosen, then current can be calculated by the
inverse function f−1j (x, ij) of Eq. (5) with the command force and its position.

In this paper, the FDF is chosen as shown in Table 2 [8] and the approximated function of the change
rate of inductance is described as [16],

dLj(xj(t))

dxj(t)
= −Kpj sin

(
2πxj(t)

w2

)
, j = a, b, c
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Fig. 2. Diagram of winding excitation scheme.

Fig. 3. Control diagram of the fuzzy PD controller.

xb = xa +
2w2

3
(6)

xc = xa +
w2

3
Here, w2, xj , and Kpj are the pole pitch of the LSRM, the displacement of phase j and a proportional

parameter, respectively.

3. Fuzzy PD controller design

The fuzzy controller consists of a fuzzy controller and a conventional PD controller. The fuzzy PD
control diagram is shown in Fig. 3. The fuzzy controller provides real-time increment values (∆Kp,
∆Kd) to adjust the parameters of the conventional PD controller online based on the fuzzy rules and
reasoning. The adjusted parameters are Kp and Kd, which are the proportional and differential gains of
the fuzzy PD controller, respectively. The initial proportional and differential gains are Kp0 and Kd0,
and they can be regulated once. The initial gains cannot be modified after the control process starts.

The proposed fuzzy PD controller has two inputs and two outputs. The value of deviation e and the
value of deviation change rate ec are the inputs for each component controller. ∆Kp and ∆Kd are
the fuzzy controller outputs. The algorithm to obtain the current PD gain values can thus be briefly
represented as,{

Kp = Kp0 + ∆Kp

Kd = Kd0 + ∆Kd
(7)
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Table 3
Fuzzy rule

e

∆Kp\∆Kd ec
NB NM NS ZO PS PM PB

NB PB\PS PB\PS PM\PB PM\PB PS\PM PS\PS ZO\PS
NM PB\PS PB\PS PM\PB PS\PM PS\PM ZO\PS ZO\ZO
NS PM\ZO PM\PS PM\PM PS\PM ZO\PS ZO\PS ZO\ZO
ZO PM\ZO PM\PS PS\PS ZO\PS PS\PS PM\PS PM\ZO
PS ZO\ZO ZO\PS ZO\PS PS\PM PS\PM PM\PS PM\ZO
PM ZO\ZO ZO\PS PS\PM PS\PM PM\PB PM\PS PB\PS
PB ZO\PS PS\PS PM\PM PM\PB PM\PB PB\PS PB\PS

Fig. 4. Membership functions for inputs and outputs.

Detailed information to derive ∆Kp and ∆Kd can be summarized as the following steps.
The fuzzification process is to transform the accurate input values into a set of fuzzy variables. Both of

the transformed input and output domains of fuzzy set are selected as [−6−4−2 0 2 4 6]. The fuzzy sets
for inputs and outputs contain the same fuzzy linguistic variables as: {Negative Large (NL), Negative
Middle (NM), Negative Small (NS), Zero (ZO), Positive Small (PS), Positive Middle (PM), Positive Big
(PB)}. A symmetric, equi-distribution, full-fold triangular membership function are employed for all
input and output variables and the membership functions are shown in Fig. 4. The horizontal coordinate
µ is the value of input variable after domain transformation. The longitudinal coordinate µ(u) is the
membership function of the input variable.

The setting rule table for fuzzy reasoning is shown in Table 3. The rule table is obtained accord-
ing to the following principles which are summarized from the different roles of the proportional and
differential parameters [13].
(1) When e is large, we can set a larger Kp and a smaller Kd to achieve a good dynamic response

performance and reduce error rapidly.
(2) When e is medium, a small sizeKp and a medium sizeKd can be set to reduce error and to prevent

big overshoot from the position response.
(3) When e is small, in order to further reduce error, overcome overshoot and make the system stable

rapidly, Kp should be reduced continuously.
(4) The error change rate indicates the changing speed of error, as well as the speed of response. In

order to avoid system oscillation, the value selections of Kd should refer to the value of ec. When
the value of ec is small, the value of Kd can be large, when the value of ec is large, the value of Kd

can be small, usually, it is set as a medium value.
The input values e and ec are continuously detected in the control process. Then they are transformed

into two numbers in the scope of input domain and they are given the corresponding linguistic variables
according to Fig. 4. Finally, the fuzzy reasoning results can be obtained from the basis of Table 3.
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Fig. 5. Membership functions obtained from Mamdani inference.

Fig. 6. Experimental setup.

Defuzzification is introduced to translate the fuzzy reasoning results into clear values, which can be
directly used for practical control. ∆Kp and ∆Kp are generated on-line according to the fuzzy con-
trol rules to compensate Kp and Kp for meeting the control requirements. In this paper, the Mamdani
inference is selected as the fuzzy inference method [13]. It contains three processes, the aggregation,
activation and accumulation of membership function. The area center of gravity method is adopted as
defuzzification strategy. The expression is denoted as,

u∗ =

∫ MAX
MIN u · µ(u)du∫ MAX

MIN µ(u)du
(8)

where u∗ is the defuzzification output value, u is the independent variable of membership function
domain. µ(u) is the membership function accumulated from Mamdani inference method as the black
bold line shown in Fig. 5. [MIN, MAX] is the domain of the µ(u). The enclosed area by µ(u) polyline
and u axis is the integral area which is shadowed in Fig. 5.

4. Experimental results

The experimental setup is shown in Fig. 6. The computer is a Pentium 4 personal computer that is used
to download the target codes into a dSPACE DS1104 controller card. The control algorithm is developed
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Fig. 7. Profiles of position responses under conventional PD and fuzzy controller.

under the MATLAB/SIMULINK environment and all control functions are implemented by the dSPACE
DS1104 card. For the current tracking amplifier, the commercial drivers consist of three asymmetric
bridge inverters with 90 VDC power supply. A linear optical position encoder is mounted on the moving
platform of the LSRM system and providing position feedback information.

The optimal values ofKp0 andKd0 are adjusted under the conventional PD controller according to the
trial and error basis. Kp0 and Kd0 are 12 and 0.16, respectively. The PID parameters are configured such
that a minimum steady-state error values can be achieved under the nominal position reference signal of
10 mm amplitude and 0.5 Hz of frequency.

Figure 7 shows the position tracking waveforms and its corresponding control signal waveform under
the conventional PD controller and the proposed fuzzy PD controller, respectively. It can be seen that the
fuzzy PD controller behaves a good tracking performance both in positive period and negative period.
However, the conventional PD controller presents an obvious asymmetric tracking performance.

Figure 8a and b are the partial enlarged details of Part A and Part B in Fig. 7, respectively. Figure 8a
and b show the rise time and accommodation time of the position tracking system in positive period
and negative period respectively under different controllers. In the positive period, the rise time and
accommodation time under the conventional PD controller are 0.608 s and 0.627 s, respectively. The
rise time and accommodation time under the fuzzy PD controller are 0.620 s and 0.673 s. In the negative
period, the drop time and accommodation time under the conventional PD controller are about 1.595 s
and 1.610 s, respectively. The drop time and accommodation time under the fuzzy PD controller are
1.620 s and 1.665 s, respectively.

Figure 9 shows the profiles of steady-state error under the conventional PD controller and the fuzzy
PD controller. From Fig. 9, it can be seen that the conventional PD controller can achieve a 211.5 µm
and 44.5 µm steady-state error in the positive period and negative period, respectively. However, the
fuzzy PD controller can achieve the steady-state error of ± 3 µm.

Figure 10 shows the position tracking waveforms and its corresponding control signal waveform under
the control of the proposed fuzzy PD controller and a conventional PD controller respectively, with a
100 N/m spring mounted on one side of the moving platform. Figure 11 illustrates the profiles of steady-
state error under the conventional PD controller and fuzzy PD controller with the spring. According
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Fig. 8. Profiles of rise time and accommodation time in positive period (a) and negative period (b) under different controllers.

Fig. 9. Profiles of steady-state error under conventional PD and fuzzy PD controller.

to Fig. 11, when a sustained turbulence is loaded to LSRM, the position tracking curve appears an
obvious increased steady-state error under the conventional PD controller. However the position tracking
curve under the fuzzy PD controller performs a good steady-state error. Figure 11 clearly shows that the
steady-state errors are controlled in the range from 1157–1212 µm and the range from 8–9 µm under the
conventional PD controller and the fuzzy PD controller, respectively.

The key control indices from the experiment results are collected in Table 4. It is clearly that the
steady-state errors between the positive period and negative period are quite different under the conven-
tional PD controller. This is because the mathematic models from the positive and negative period are
not uniform, and the reason may originate from the asymmetric behaviors such as friction coefficients or
manufacture imperfection, etc. Nevertheless, the steady-state error between positive period and negative
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Fig. 10. Profiles of position responses with a spring load under conventional PD and fuzzy controller.

Fig. 11. Profiles of steady-state error with a spring load under conventional PD and fuzzy controller.
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Table 4
Results of control indices

Stage Items Convention PD controller Fuzzy PD controller
Positive period Rise time 0.608 s 0.620 s

Accommodation time 0.627 s 0.673 s
Steady-state error (no spring) 211.5 µm 3 µm
Steady-state error (with spring) 1212 µm 9 µm

Negative period Rise time 1.595 s 1.620 s
Accommodation time 1.610 s 1.665 s
Steady-state error(no spring) −44.5 µm −3 µm
Steady-state error(with spring) 1157 µm −8 µm

period are almost symmetric under the fuzzy PD controller both in the normal circumstance without dis-
turbance and sustained disturbed circumstance. Though sacrificing little dynamic performance, the fuzzy
PD controller can compensate the influence of the model variations. It can obtain a good steady-state
capability especially under sustained disturbance.

5. Conclusion

This paper proposes a fuzzy PD control method for the high-precision control of the LSRM. Exper-
imental results demonstrate that the steady-state errors of the position tracking for the LSRM in the
positive and negative period can maintain symmetric, and the steady-state errors can be maintained
within ± 10 µm when the system parameters are under the external disturbance. These results confirm
that the method is effective and robust in the position tracking for the LSRM.

The proposed fuzzy PD has the merit to increase the steady-state error precision, however, the rise
time is sacrificed for the steady-state regulation based on the fuzzy algorithm.
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