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Abstract: The integrated direct-drive rotary–linear switched reluctance motor (RLSRM) is investigated in this paper. The
characteristics of the RLSRM are further inspected by using the finite element method after theoretical analysis. The torque
and force distribution function (TFDF) is proposed for the RLSRM based on the multiphase excitation scheme to decouple
the linear and the rotary axis of motion. Based on the simple proportional–integral-derivative position control algorithm, the
experimental results testify the effectiveness of the proposed TFDF for individual control for each axis.
1 Introduction

In modern industry, high-precision position control of two
degree-of-freedom motions for simultaneous rotary and
linear movement is in high demand, such as printed circuit
board drilling, laser soldering and component packaging
and so on. Traditionally, these kinds of motions are
commonly realised by two separate motors stacked on top
of each other, coupled with necessary mechanical
rotary-to-linear translators. However, it often leads to a
complexity in the mechanical structure, bulk in volume,
slow response and low-precision positioning problems.
Drive-drive rotary–linear motors, capable of torque and
axial force generation at the same time, have aroused
researchers’ attention [1].
The direct-drive machine has the characteristics of a

simplified mechanical structure, improved dynamic
performance and adaptation to certain working environments
[2–7]. Krebs et al. [2] proposed an integrated permanent
magnet (PM) rotary-linear machine with an iron toothed
armature and a concentrated coil structure. The machine
applies 48 alternatively polarised PMs for the mover and
the stator has 18 salient poles with coils. The design and
the modelling of the PM rotary–linear motor for different
operating points are discussed in [3] and a decoupling
control method based on the d−q transformation is studied
in [4]. Based on the PM machine principle, a rotary–linear
motor with less complexity dedicated to electric vehicle
wheels has been discussed [5, 6]. The synchronous machine
applies two stators with windings and one mover core with
PMs for a three-phase flux circulation. Aiming at Joule
losses minimisation, an optimisation process is developed
based on the analytical study [7].
The rotary-linear motors discussed above require PMs to

facilitate a magnetic flux circulation. The involvement of
the PMs often leads to high production and assembly cost,
even a complicated winding structure. Furthermore, the
overall control system is complex and expensive. The
switched reluctance motor (SRM) is an attractive solution
because of its remarkable advantages such as simple and
robust construction, low cost and the capability of
withstanding hostile environments [8].
Two kinds of integrated rotary–linear SRMs have been

proposed in [9–11]. The first type utilises a pair of rotary
stator windings and three linear propulsion windings that
correspond to a typical ‘6/4’ linear SRM [9, 10]. The mover
poles are alternatively toothed on the shaft. This kind of
machine is capable of a long stroke movement. The
structure of the three stator phases for the integrated rotary
and linear movement with a multi-segmented structure
based on the simulation analysis is proposed in [11].
Although it can realise a long distance movement, the
modular cascaded stators lead to a complex winding
structure and drive topology. In [12], the rotary–linear SRM
with one rotary stator and two linear propulsion stators for a
short-distance stroke operation is introduced. To further
minimise the number of the stators, a machine with double
identical stators for both rotary and linear motion is
proposed [13]. The output force and the torque can be
independently controlled based on the proportional–
integral-derivative (PID) algorithm. For angular and linear
position detection, the control system applies three
reflective fibre optic switches for shaft angle detection and a
conductive plastic potentiometer for linear position sensing.
Therefore the sensing system is complicated since the optic
switches must be mounted on the stator poles inside the
machine housing. Furthermore, the rotary and the linear
axes of the movement are highly coupled and a proper
decoupling algorithm should be developed for the
integrated rotary-linear machine.
The current research mainly focuses on the design and the

optimisation of the rotary–linear switched reluctance motors
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(RLSMs) and a high-precision position control performance has
not yet been realised because of the high coupling features
between the axes of the motions. To obtain a better operation
performance, this paper proposes a decoupling motion control
algorithm based on a novel torque and force distribution
function (TFDF). Apart from the previous paper discussed
above, the proposed torque and the force function are capable
of independent and simultaneous position control for each
axis of motion. The proposed function and the control
method are verified by simulation and experiment on the
RLSRM. Both the simulation and the experimental results
indicate that the proposed motion control system implemented
with the decoupling algorithm can achieve a certain control
precision for each axis of motion. The system also exhibits a
certain load disturbance rejection capability.
After a thorough investigation of the coupling

characteristics of the rotary and the linear motion for the
RLSRM in Section 2, the TFDF that aims to decouple the
two axes of motion is proposed for an independent control
of the rotary and the linear axis simultaneously in Section
3. In Section 4, the simple yet effective PID algorithm is
employed for an independent control of both the axes of
motion. Section 5 provides the experimental results that
validate the effectiveness of the proposed TFDF.
2 Machine structure and modelling

2.1 Machine structure of the RLSRM

Fig. 1a shows the primary structure of the RLSRM, which
mainly consists of stator I, stator II and the mover with a
shaft. The stators are identical and each stator has a set of
three-phase windings. The stators are located on the base at a
zero phase shift. The topology of each stator and the mover
corresponds to a typical ‘6/4’ SRM. A pair of rotary–linear
bearings are installed coaxially to facilitate the shaft for rotary
Fig. 1 Structure of the RLSRM

a Machine structure
b Prototype
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and linear movement at the same time. Since the shaft is not
locked and supported by the brackets with integrated
bearings, linear motion in two directions of the x-axis can be
performed by a proper excitation of the phases(s) from the
two stators. Instead of the fibre optic switches for angular
displacement detection, a rotary optical encoder is installed
on the fixture and it is concentrical with the shaft. The fixture
also integrates a linear magnetic encoder for translational
position measurement. The damper protects the fixture from
hitting the bracket if a large linear motion overshoot is
expected. Compared with the previously constructed rotary–
linear machine [13], the rotary and the linear encoders can be
independently installed. The following advantages of the
machine can be summarised:

1. least winding arrangement and a simple winding scheme
with the coils mounted on the stator with an adjustable
linear stroke,
2. simple and robust machine structure,
3. low overall production cost,
4. good heat dissipation with an open machine structure,
5. capable of operation under an extreme environment if the
encoders are kept outside.

Fig. 1b shows the overall structure of the RLSRM
prototype and the major machine specifications are
tabulated in Table 1.
2.2 Modelling of the RLSRM

The RLSRM can be regarded as a typical mechatronic system
according to the principle of energy conservation as [14]

dWe = dWl + dWs + dWm (1)
IET Electr. Power Appl., 2014, Vol. 8, Iss. 5, pp. 199–208
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Table 1 Major machine specifications

Parameter Value

material model 50W1300
lamination thickness 0.5 mm
air gap length 0.5 mm
mover mass 3.35 kg
no. of turns per phase 150
phase conductivity 2 × 106 s/m
stator arc length 40°
rotor arc length 40°
slot arc length 20°
pole-pitch (rotary axis) 60°
phase resistance 7.8 Ω

www.ietdl.org
where dWe, dWl, dWs and dWm are the incremental electric
input energy, the incremental loss energy dissipated by
heat, the incremental stored magnetic energy and the
incremental mechanical energy, respectively. For the linear
axis of movement, the incremental mechanical energy in
terms of the propulsion force and a change in the mover
position can be represented as

dWmx = Fxdx (2)

where Fx is the propulsion force and dx is the incremental
linear displacement from the mover in the axial direction.
For the rotary axis of motion, the incremental mechanical
energy in terms of an electromagnetic torque and a change
in the rotor position can be expressed as

dWmu = Tudu (3)

where Tθ is the electromagnetic torque and dθ is the
incremental angular displacement. In the case of the
RLSRM, the incremental mechanical energy can be
expressed as

dWm = Fxdx+ Tudu (4)

The dynamic model of the RLSRM in the rotary and the linear
directions can be reconstructed as follows

Fx = Mẍ+ Dẋ+ f
Te = J ü+ K u̇+ TL

{
(5)

where M, D and f are the masses of the mover, the friction
coefficient and the load force. J is the moment of inertia, K
is the friction coefficient and TL is the load torque.
By neglecting the mutual inductance between the phases,

the voltage balancing equation can be characterised as [14]

u = Ri+ dC(u, x, i)

dt
(6)

where R is the resistance and the flux-linkage and Ψ is the
u = Ri+ d L u, x, i( )i{ }
dt

= Ri+ L u, x, i( ) di
dt

+ i
dL u, x, i( )

du

du

dt

= Ri+ L u, x, i( ) + i
dL u, x, i( )

di

( )
di

dt
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function of the angle, the mover position and the phase
current, respectively. In the linear region, it can be further
expressed as

C = L(u, x, i)i (7)

where L is the inductance dependent on the angle, the mover
position and the phase current. Equation (6) can be rewritten
as (see (8))

In (8), it shows that the phase voltage is equal to the sum of
the resistive voltage drop given by Ri, the induced voltage
drop (L(θ, x, i) + i(dL(θ, x, i)/di)) (di/dt) and the back
electromotive force, identified by the term i(dL(θ, x, i)/dθ)
ωm + i(dL(θ, x, i)/dx)vx. ωm is the angular speed and vx is
the linear motion speed. The electromagnetic force Fx and
the torque Tθ in the linear region can be represented as

Fx =
1

2
i2
dL u, x, i( )

dx

Tu =
1

2
i2
dL u, x, i( )

du

⎧⎪⎨
⎪⎩ (9)

Both the two stators, have a set of three-phase windings. As
the three phases are considered, the voltage balancing
equation can be represented in the matrix form as

U = RI + d

dt
c (10)

where U = [UA, UB, UC]
T, R = diag[RA, RB, RC], I = [iA, iB,

iC]
T and c = [cA, cB, cC]

T, respectively, with

cA

cB

cC

⎡
⎣

⎤
⎦ =

LAA LAB LAC
LBA LBB LBC
LCA LCB LCC

⎡
⎣

⎤
⎦ iA

iB
iC

⎡
⎣

⎤
⎦ (11)

If i = j, then Lij stands for the self-inductance of the ith phase;
otherwise, it is the mutual inductance from another phase,
which is expressed as a function of the rotary displacement,
the linear displacement and the current, respectively. The
electromagnetic torque Tθ and the propulsion force Fx can
thus be rewritten as

Fx =
1

2
IT

∂

∂x
L

( )
I

Tu =
1

2
IT

∂

∂u
L

( )
I

⎧⎪⎪⎨
⎪⎪⎩ (12)

The partial derivatives of the inductance with respect to the
linear and the angular position are denoted as gθ and gx,
respectively. The change of the inductance from the linear
+ i
dL u, x, i( )

dx

dx

dt
+ i

dL u, x, i( )
di

di

dt

+ i
dL u, x, i( )

du
vm + i

dL u, x, i( )
dx

vx

(8)
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Fig. 2 Flux distribution

a Front view
b Side view
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and the rotary axes of motion can be described as

∂

∂x
L =

gxAA gxAB gxAC
gxAB gxBB gxBC
gxAC gxBC gxCC

⎡
⎣

⎤
⎦ (13)

∂

∂u
L =

guAA guAB guAC
guAB guBB guBC
guAC guBC guCC

⎡
⎣

⎤
⎦ (14)

3 Torque and force distribution function

3.1 Current derivation

Owing to the large air gap region between the mover and the
stators, the torque and the force can be considered under a full
operation of the linear region. From (9), the force and the
torque generation for the stators I and II can be rewritten as

F I
x =

1

2
i2m
dL u, x, im

( )
dx

= 1

2
i2mg

I
xm

T I
u =

1

2
i2m
dL u, x, im

( )
du

= 1

2
i2mg

I
um

⎧⎪⎪⎨
⎪⎪⎩ (15)

F II
x = 1

2
i2n
dL u, x, in

( )
dx

= 1

2
i2ng

II
xn

T II
u = 1

2
i2n
dL u, x, in

( )
du

= 1

2
i2ng

II
un

⎧⎪⎪⎨
⎪⎪⎩ (16)

wherem is one of the three phases from stator I and n is one of
the three phases from stator II, respectively, where

gIum = dL u, x, im
( )
du

, gIxm = dL u, x, im
( )
dx

,

gIIun =
dL u, x, in

( )
du

and gIIxn =
dL u, x, in

( )
dx

The total force and torque generations of the RLSRM can be
represented as

Fx = F I
x + F II

x = 1

2
i2mg

I
xm + 1

2
i2ng

II
xn

Tu = T I
u + T II

u = 1

2
i2mg

I
um + 1

2
i2ng

II
un

⎧⎪⎨
⎪⎩ (17)

From the above equations, the phase currents of stator I and
stator II can be calculated as

im =
������������������
2Tug

II
xn − 2Fxg

II
un

gIumg
II
xn − gIxmg

II
un

√

in =
�������������������
2Fxg

I
um − 2Tug

I
xm

gIumg
II
xn − gIxmg

II
un

√
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(18)

3.2 Finite element method (FEM) analysis

Fig. 2 shows the magnetic flux distribution at the position of
x = 0 at θ = 20° with the current excitation of the level at 2 A.
x = 0 mm stands for the exact middle position of the mover
with respect to the two stators and θ = 0° is the fully
aligned position from phase A of the two stators. It can be
202
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observed that there are two different kinds of flux which
generate the propulsion force and the torque
simultaneously. Since the magnetic paths for the force and
the torque generation share the same flux lines, the axes of
the linear and the rotary movement are highly coupled.
The flux-linkage of any one phase can be calculated and the

contour according to different angular and linear positions at a
current excitation of 2 A can be drawn as shown in Fig. 3a.
Since the machine operates under the linear region, gθ and
gx can be derived from the simulation results of the
flux-linkage values. Torque output profiles according to
different linear displacements can be derived as shown in
Fig. 3b. It is clear that the torque is not only a function of
the angular displacement, but it also depends on the linear
position of the mover shaft. It can also be deduced from
Fig. 3c of the force output profiles under different linear
positions against the angular displacement that the force is
the function of both the linear and the angular
displacements. Therefore the linear and the rotary axes of
motion are highly coupled.
3.3 Torque and force distribution function

From the above theoretical deductions and the simulation
analysis, given any linear and angular position, the current
of any phase from any stator contributes to a simultaneous
force and torque generation. If x = 0 mm stands for the
exact middle position with the mover with respect to the
two stators, then the excitation phase(s) are different for
the positive and the negative force commands though the
absolute command value is the same. Meanwhile, for the
different angular displacements, the torque generation
corresponds to different phase(s) if θ = 0° stand for the fully
IET Electr. Power Appl., 2014, Vol. 8, Iss. 5, pp. 199–208
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Fig. 3 Electromagnetic characteristics

a Flux-linkage characteristics
b Torque profiles
c Force profiles at 2 A

Table 2 Torque and force distribution function

Position x, mm Angle θ T ∗
u . 0 T ∗

u , 0

0≤ x < 14 0°≤ θ < 10°
Tu = T I

uC + T II
uA

Fx = F I
xC + F II

xA

Tu = T I
uB + T II

uC

Fx = F I
xB + F II

xC

10°≤ θ < 20°
Tu = T I

uC + T II
uA

Fx = F I
xC + F II

xA

Tu = T I
uA + T II

uC

Fx = F I
xA + F II

xC

20°≤ θ < 30°
Tu = T I

uB + T II
uC

Fx = F I
xB + F II

xC

Tu = T I
uA + T II

uC

Fx = F I
xA + F II

xC

30°≤ θ < 40°
Tu = T I

uB + T II
uC

Fx = F I
xB + F II

xC

Tu = T I
uA + T II

uB

Fx = F I
xA + F II

xB

40°≤ θ < 50°
Tu = T I

uB + T II
uC

Fx = F I
xB + F II

xC

Tu = T I
uC + T II

uB

Fx = F I
xC + F II

xB

50°≤ θ < 60°
Tu = T I

uA + T II
uB

Fx = F I
xA + F II

xB

Tu = T I
uC + T II

uB

Fx = F I
xC + F II

xB

60°≤ θ < 70°
Tu = T I

uA + T II
uB

Fx = F I
xA + F II

xB

Tu = T I
uC + T II

uA

Fx = F I
xC + F II

xA

70°≤ θ < 80°
Tu = T I

uA + T II
uB

Fx = F I
xA + F II

xB

Tu = T I
uB + T II

uA

Fx = F I
xB + F II

xA

80°≤ θ < 90°
Tu = T I

uC + T II
uA

Fx = F I
xC + F II

xA

Tu = T I
uB + T II

uA

Fx = F I
xB + F II

xA

−14≤ x < 0 0°≤ θ < 10°
Tu = T I

uA + T II
uC

Fx = F I
xA + F II

xC

Tu = T I
uC + T II

uB

Fx = F I
xC + F II

xB

10°≤ θ < 20°
Tu = T I

uA + T II
uC

Fx = F I
xA + F II

xC

Tu = T I
uC + T II

uA

Fx = F I
xC + F II

xA

20°≤ θ < 30°
Tu = T I

uC + T II
uB

Fx = F I
xC + F II

xB

Tu = T I
uC + T II

uA

Fx = F I
xC + F II

xA

30°≤ θ < 40°
Tu = T I

uC + T II
uB

Fx = F I
xC + F II

xB

Tu = T I
uB + T II

uA

Fx = F I
xB + F II

xA

40°≤ θ < 50°
Tu = T I

uC + T II
uB

Fx = F I
xC + F II

xB

Tu = T I
uC + T II

uB

Fx = F I
xC + F II

xB

50°≤ θ < 60°
Tu = T I

uB + T II
uA

Fx = F I
xB + F II

xA

Tu = T I
uC + T II

uB

Fx = F I
xC + F II

xB

60°≤ θ < 70°
Tu = T I

uB + T II
uA

Fx = F I
xB + F II

xA

Tu = T I
uA + T II

uC

Fx = F I
xA + F II

xC

70°≤ θ < 80°
Tu = T I

uB + T II
uA

Fx = F I
xB + F II

xA

Tu = T I
uA + T II

uB

Fx = F I
xA + F II

xB

80°≤ θ < 90°
Tu = T I

uA + T II
uC

Fx = F I
xA + F II

xC

Tu = T I
uA + T II

uB

Fx = F I
xA + F II

xB
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aligned positions from phase A to the stator I or II. According
to the machine topology, the excitation scheme can thus be
tabulated as listed in Table 2. For any specific position and
angular displacement, Table 2 shows which phases should
be activated for a proper force and torque generation. For
example, for the case of a positive displacement command
and angular position between 10° and 20°, if a negative
torque command is required, then phase A from stator I and
phase C from stator II shall be activated at the same time.
The current values of phases A and C can be solved
according to (17) together with gθ and gx, which can be
calculated according to the simulated flux-linkage profiles
from the FEM. T∗

u is the torque reference and it can be
positive or negative. m stands for one of the three phases
IET Electr. Power Appl., 2014, Vol. 8, Iss. 5, pp. 199–208
doi: 10.1049/iet-epa.2013.0248
from the phases A, B or C of stator I and n is one of the
three phases that can be A, B or C, respectively, from stator
II. F I

xm, F
II
xn, T

I
um and T II

un are the generated force and torque
from stators I and II, respectively.
The flowchart for the phase current derivation with the

TFDF can be summarised as shown in Fig. 4. First, a
single phase is attempted regarding the linear force
command F I∗

x from stator I at a specific linear and angular
position. Single phases A, B or C can be determined
according to (9) then the value of i∗m can be derived. The
intermediate torque value T I′

u can be calculated from the
second equation of (9) and it is compared with the desired
force command T I∗

u . If they are not equal, the algorithm
continues to consult Table 2 and solve the required
i∗m and i∗n according to (18).
203
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Fig. 4 Flowchart of the current derivation with the TFDF

Fig. 5 Block diagram of one phase of stator I

www.ietdl.org
4 Decoupling control of the RLSRM

4.1 Derivation of the phase current

From (6), the voltage equation of stator I and stator II can be
given by

um = Rmim + L u, x, im
( ) dim

dt
+ img

I
umvu + img

I
xmvx

un = Rnin + L u, x, in
( ) din

dt
+ ing

II
unvu + ing

II
xnvx

⎧⎪⎨
⎪⎩ (19)

where um and un are the applied voltage to the phase winding
of stator I and stator II and Rm and Rn are the phase resistances
of stator I and stator II, respectively. The above equation can
be further represented as (see (20))

where a0 = (1/L(θ, x, im)), a1 = (Rm/L(θ, x, im)), a2 = (gIum/
L(u, x, im)), a3 = (gIxm/L(u, x, im)); b0 = (1/L(θ, x, in)), b1 =
dim
dt

= − Rm

L u, x, im
( ) im − gIum

L u, x, im
( )v

= −a1im − a2vuim − a3vxim + a0
din
dt

= − Rn

L u, x, in
( ) in − gIIun

L u, x, in
( )vu

= −b1in − b2vuin − b3vxin + b0u

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩
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(Rn/L(θ, x, in)), b2 = (gIIun/L(u, x, in)) and b3 = (gIIxn/
L(u, x, in)).
The block diagram of the current controller for any one

phase of the stator I can be derived as shown in Fig. 5.
4.2 Position controller design for the RLSRM

As denoted by (12), it is clear that the electromagnetic force
and the torque generation can be indirectly controlled by
the phase currents. The phase current is dependent not only
on the angular and the linear speed, but is relevant to the
phase inductance, which is a function with respect to
the current and the mover position from both the linear and
the rotary directions. Regardless of the load, (9) can be
rewritten in the state-space form as

Y = AÜ + BU̇ (21)

where

Y = [Fx Tu ]
T, A = M 0

0 J

[ ]
,

B = D 0
0 K

[ ]
and U̇ = ẋ u̇

[ ]T

Therefore the open-loop transfer function for the RLSRM can
be represented as

P(s) = Kp

As2 + Bs
(22)

with Kp = [1 1000]T. The constant of 1000 is the unit
conversion from millimeter to meter. A proportional–
integral (PI) controller and a proportional–derivative (PD)
controller are employed for the angular and the linear
uim − gIxm
L u, x, im
( ) vxim + um

L u, x, im
( )

um

in −
gIIxn

L u, x, in
( ) vxin + un

L u, x, in
( )

n

(20)

IET Electr. Power Appl., 2014, Vol. 8, Iss. 5, pp. 199–208
doi: 10.1049/iet-epa.2013.0248



Fig. 8 Experimental setup
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position control, respectively, denoted as

Cu(s) = KuP +
KuI

s
Cx(s) = KxP + KxDs

⎧⎨
⎩ (23)

where KθP, KθI are the proportional and the integral gains of
the angular position controller and KxP and KxD are the
proportional and the derivative gains for the position
controller, respectively. As shown in Fig. 6, the control
system first receives the angular and the position commands
Rθ(s) and Rx(s), then the position controllers generate the
corresponding torque and force commands T∗

u and F∗
x ,

respectively. The transfer function N(s) stands for the FTDF
and the phase currents derivation of stator I and stator II
based on (18), and it calculates the six phase current
commands iI∗m and iI∗n for stator I and II, respectively,
according to Fig. 4. P(s) represents the transfer function of
the RLSRM. It outputs the angular and the linear position
information and the signals are fed back to the input of the
position control system. The proposed position control
scheme is illustrated in Fig. 7.
Fig. 6 Block diagram of the position control loop

Fig. 7 Control scheme

IET Electr. Power Appl., 2014, Vol. 8, Iss. 5, pp. 199–208
doi: 10.1049/iet-epa.2013.0248
5 Experimental results

The experiment is performed on the dSPACE DS1104
controller platform which can directly interface with the
real-time workshop of MATLAB/SIMULINK and the
205
& The Institution of Engineering and Technology 2014



Fig. 9 Decoupling test from each axis

a Response profiles of the rotary direction
b Response profiles of the linear direction
c Response profiles of the linear direction
d Response profiles of the rotary direction
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control parameters can be modified online. Six commercial
amplifiers capable of an inner current regulation are
employed with a 20 kHz switching frequency while the
sampling rate of 1 kHz is selected for the position control
loops. The rotary encoder with a resolution of 0.144° and
the linear optical encoder with a resolution of 1 μm are
mounted on the RLSRM and the overall experimental setup
is shown in Fig. 8.
To test the decoupling effect from each axis of motion, the

response profiles from a sinusoidal reference for each axis of
motion can be found in Figs. 9a and c. Corresponding
response waveforms from the other direction are provided,
as shown in Figs. 9b and d. With the amplitude of the
angular displacement of 200°, the dynamic position
response from the linear motion falls into ±0.007 mm.
Meanwhile, the dynamic angular displacement can be
restricted to ±0.25° with a linear amplitude of 20 mm from
the linear axis of motion. Therefore it can be concluded that
the two axes of motion are successfully decoupled.
The parameters of the PI and the PD position controllers

are regulated based on a trial and error basis [15] with the
gains listed in Table 3. The results from the simulation and
the experiment of the angular and the linear square response
Fig. 10 Response from the rotary axis

a Dynamic error
b Trajectory response

Table 3 Controller parameters

Angular position
control loop

Linear position
control loop

gain KθP KθI KxP KxD
value 0.08 0.009 0.026 0.01495
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Fig. 11 Response from the linear axis

a Dynamic error
b Trajectory response
c Combined trajectory response

Fig. 12 Sinusoidal position profiles from

a The rotary axis
b The linear axis
c Combined trajectory response
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profiles from the PI and the PD controllers can be found in
Figs. 10 and 11, respectively. Both the overshoot-free
position response waveforms can be enjoyed. With an
amplitude of 200°, the absolute static errors of the
experimental angular square position response fall into
0.482° and 0.564° for the positive and the negative
transition and the simulation results of the absolute static
errors of the angular square position response are equal to
0.120° for both the positive and the negative transition,
respectively. For the response of the linear axis, the
experimental static errors are within −0.063 and 0.056 mm
for the positive and the negative transition and the
simulation results of the static errors are equal to 0.006 mm
IET Electr. Power Appl., 2014, Vol. 8, Iss. 5, pp. 199–208
doi: 10.1049/iet-epa.2013.0248
for both the positive and the negative transition,
respectively. Since there exist mechanical imperfections
such as manufacture or assembly errors, the control
performances from the simulation results are much better
compared with that of the experiment. In addition, it is
difficult to regulate the symmetric profiles from the positive
and the negative transitions for both the axes of movement.
If the square position commands from the linear and the
rotary axes possess a half-period phase difference, the
207
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Fig. 13 Step response with load disturbances from

a Rotary
b Linear direction

www.ietdl.org
composite graph of a triangular trajectory can be achieved, as
shown in Fig. 11c for the dynamic response profiles.
The dynamic response profiles from the sinusoidal position

commands can be found in Figs. 12a and b for the rotary
and the linear axis, respectively. The performance from the
rotary axis is better because of a lower inertia from this
direction. If both the linear and the rotary axes follow the
sinusoidal command with a period of 5 s, the dynamic
response of a sinusoidal profile can be obtained as all the
control parameters remain unchanged, as shown in Fig. 12c.
The dynamic performance deteriorates according to the
time-varying command signals since the control parameters
are regulated based on a square response. However, the
trajectory response demonstrates that the linear and the rotary
axes are successfully decoupled and the position control from
each axis of motion can be achieved independently.
To verify the disturbance rejection ability, load

perturbations of 0.05, 0.1 N·m and 1.5, 4 N are added to the
rotary and the linear axis of motion at 1.6 and 2.3 s,
respectively, as shown in Fig. 13. Both the directions can
regulate to their original steady-state profiles under a load
interference. It can be concluded that both the axes of
motion have a certain robustness.

6 Conclusion

A direct-drive RLSRM with inherently coupled axes of
motion from the rotary and the linear movements is
208
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investigated. Based on the multiphase excitation method, a
TFDF scheme is proposed for the RSLRM to decouple the
two axes. The position controllers based on the simple PI
and PD are constructed for the rotary and the linear axis,
respectively. The simulation and the experimental results of
the position response profiles from both the axes verify the
effectiveness of the proposed TFDF that each axis of
motion can be independently controlled simultaneously.
Owing to the mechanical imperfections from the
manufacturing and the assembly errors, the dynamic
response profiles from the positive and the negative parts
for the rotary and the linear axes of motion are not
symmetric. It is suggested that more advanced control
methodologies can be applied to the RLSRM for a uniform
and high-precision position tracking performance for both
the axes of motion based on the proposed TFDF.
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