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a b s t r a c t

The design of an X–Y table applying direct-drive linear switched reluctance motor (LSRM) principle is

proposed in this paper. The proposed X–Y table has the characteristics of low cost, simple and stable

mechanical structure. After the design procedure is introduced, an adaptive position control method

based on online parameter identification and pole-placement regulation scheme is developed for the

X–Y table. Experimental results prove the feasibility and its priority over a traditional PID controller

with better dynamic response, static performance and robustness to disturbances. It is expected that

the novel two-dimensional direct-drive system find its applications in high-precision manufacture area.

& 2012 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Modern industrial automatic systems usually require high-
speed or high-precision linear motions. This is often realized by
rotary motors coupled with mechanical translators, such as gears
or belts for rotary to linear motion transformation. Such mechan-
ical transmissions not only reduce linear performance, but also
introduce backlash, frictional and inertial loads to the system [1].
With the fast development of power electronics and motion
control algorithms, direct-drive machines have aroused research-
ers’ attention. In a direct-drive system, electrical energy is directly
converted into mechanical output, eliminating any mechanical
translators. With the direct coupling method, the mechanical
structure of the actuator can be greatly simplified and the whole
system will be easy to assemble, reduced in cost and increased in
performance.

For linear direct-drive machines, linear permanent magnet
motors (LPMMs), linear induction motors (LIMs) and linear
switched reluctance motors (LSRMs) are commonly available.
Similar to a rotary induction machine, the LIM has a robust
mechanical structure and a smooth force output can be obtained
under proper control algorithms. However, a high air gap flux
density is difficult to be developed and the large end effects
impose a severe control burden to the system [2]. Among all types
of linear machines, a LPMM has relatively high efficiency and
larger speed regulation range; therefore, it is a viable candidate to
by Elsevier Ltd. All rights reserve

,

meet the increasing demands for high accuracy in industrial
applications. Since LPMMs rely on permanent magnets for mag-
netic force production, inevitably, system cost is high and the
temperature range of operation is limited, due to the character-
istics of permanent magnets. Furthermore, LPMMs are more
easily affected by load disturbances, force ripples and para-
meter variations, etc., which significantly deteriorate system
performance [3].

Switched reluctance motors (SRMs) have the advantages of
simple structure, high robustness, and absence of permanent
magnets. Though the control of the SRM is complex, due to the
highly nonlinear characteristics inherent in the magnetic path,
SRMs have been successfully applied in many high-precision
speed regulation fields [4–6]. Compared to LPMMs, LSRMs have
a relatively low power density, nevertheless, the simple and
robust structure and the low system implementation cost make
them a feasible alternative for LPMMs in low-speed, high-
precision applications in industry. In this paper, a design method
of LSRM-based two-dimensional (2D) X–Y machine is introduced.

Industrial manufacturing environment is filled with many
kinds of disturbances such as coupled interferences, unmeasured
frictions, external load disturbances and unmodeled dynamics,
etc. Therefore a proper measure should be taken for correct
detection and compensation of disturbances in real-time. It is
very difficult for a traditional proportion–integral–derivative
(PID) controller to cope with disturbances and variations since
its design is mainly based on the static model of the system [7].
Therefore a control algorithm of disturbance detection and real-
time compensation should be introduced to overcome this defi-
ciency. Based on previous study and research, the authors
successfully implement an adaptive approach with online
d.
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Table 1
Specifications of the prototype.
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parameter identification on the LSRM-based X–Y machine to
correct disturbances and mechanical imperfections, increasing
robustness for system operation.
Traveling distance (X/Y) (mm) 120/170

Air gap (X/Y)—z (mm) 0.2/0.3

Pole-pitch—p (mm) 12

Tooth width—d (mm) 6

Mass of X moving platform—mx (kg) 1.5

Mass of Y moving platform (not including X platform) —my (kg) 2.8

Number of turns per phase—N 160

Stack length—l (mm) 24/48

Encoder resolution (mm) 0.5
2. Design and construction

The LSRMs applied for the X–Y machine has a ‘‘passive-stator–
active-mover’’ structure and this arrangement has the following
advantages [8],
1.
 Simple manufacture of the stator base without complicated
coil arrays
2.
 Flexible traveling range and stator dimensions

3.
Fig. 2. Prototype of the machine.
Easy manufacture of mover slots with mounted coil windings

Since the X–Y machine is designed for low-speed, high-
precision applications, to meet with the maximum output force
requirement, regardless of end effect, normal and propulsion
force in the linear region for each phase can be derived from
the following equations as [9],

f zðs,iÞ ¼ �
m0lN2i2ðd�sÞ

2z2
ð1Þ

f xðs,iÞ ¼
p� i2

� LD
p

� sin
2ps

p

� �
ð2Þ

where s is travel distance, l is stack length, N is number of turns,
i is phase current and 2LD is change of phase inductance from
aligned to un-aligned positions. Other parameters are specified in
Fig. 1. In general, LD is a function of motor geometry (d,p,l,z). The
phase inductance can be represented by the Fourier series. If the
first order approximation is considered, the self-inductance is
equal to [10],

LðxÞ ¼ LlsþL0þLDcos
2px

p

� �
ð3Þ

L0 ¼N2m0lNsC0 ð4Þ

LD ¼N2m0lNsC1 ð5Þ

where Lls is phase leakage inductance and Ns is the number of
teeth on a primary side pole. The Fourier coefficients C0 and C1 for
the normalized permeance of one teeth can be found in a
standard table [11] for pole-pitch versus air gap length.

In case of both LSRMs, Ns is chosen as 2 and air gap length z is
chosen to be 0.2 and 0.3 mm for the X and Y direction, respec-
tively, for practical and accurate mechanical manufacture and
alignment. Since Y axis carries X axis and bears more weight
and load, stack length are selected as twice of that from the
X direction. The mechanical dimensions of the proposed machine
are summarized in Table 1 and the prototype has been manu-
factured as shown in Fig. 2 with two sets of LSRMs stacked on top
of each other. The stator bases and the movers are manufactured
Fig. 1. Definition of motor parameters.
with aluminum alloy to reduce total weight. Silicon–steel plates
are stacked between the stator and mover slots to facilitate
magnetic paths. A pair of linear motion guides ensures smooth
sliding motion and supports the moving platform for each axis of
motion. Linear optical encoders are mounted on each LSRM to
observe motion profile and provide position feedback. The mov-
ing platform for each axis of motion is composed of three
excitation coils that is consistent with the structure of a typical
‘‘6/4’’ rotary SR motor. Each coil can be driven independently from
a magnetically decoupled structure [12]. The coils are separated
with 1201 electrical degrees to provide phase a, b and c accord-
ingly. From the overall machine construction, since no permanent
magnets, ball-screw or mechanical couplings are involved, the
manufacturing cost is greatly reduced compared with the rotary
motors plus mechanical translators solution or LPMM-based X–Y

machines.
3. Theoretical descriptions

3.1. Dynamic model

The mechanical equations that govern the entire motion
system can be described in state-space form as follows,

dsxðyÞ

dt
¼ vxðyÞ ð6Þ

dvxðyÞ

dt
¼ ðf xðyÞ�BxðyÞvxðyÞ�f lxðyÞÞ=MxðyÞ ð7Þ

where s, v, B, M, f and fl stand for position, velocity, friction
coefficient, mass, total and load force, respectively. Symbol x(y)
stands for X axis or Y axis of motion. Eqs. (6) and (7) can be further



Fig. 3. Controller structure.
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expressed as

MxðyÞ �
d2sxðyÞ

dt2
þBxðyÞ �

dsxðyÞ

dt
þ f lxðyÞ ¼ f xðyÞ ð8Þ

For high-precision position control applications, it can be
concluded that total force impressed on the moving platform of
the X or Y table should be properly regulated. Therefore, the
motion control system can be regarded as a single-input–single-
output (SISO) system with total force command fx(y) as input and
position sx(y) as system output for each axis.

From the electrical side, the kth phase (k¼a,b,c) can be
represented in voltage equation as

UkxðyÞ ¼ RkxðyÞ � ikxðyÞ þ
dlkxðyÞðsxðyÞ,ikxðyÞÞ

dt
ð9Þ

where Ukx(y), Rkx(y), and ikx(y) is terminal voltage, coil resistance
and current. Rearranging voltage balance equation and neglecting
mutual and leakage flux-linkage,

d_i

dt
¼

UkxðyÞ�RkxðyÞikxðyÞ�ð@lkxðyÞ=@sxðyÞÞ � ðdsxðyÞ=dtÞ

ð@lkxðyÞ=@iÞ
ð10Þ

As described in article [12], mutual flux-linkage can be
neglected from the finite element analysis results. Since the
machine is designed for position control applications, typically
the control system for each axis of motion can be characterized as
a dual-loop control system with current as the inner control loop
and position as the outer one [8].

Since real-time operation environment is full of noise and
disturbances, the second-order system depicted in Eq. (8) can be
further represented in discrete-time form as [13],

Aðz�1Þ � sxðyÞ ¼ Bðz�1Þ � f xðyÞ þexðyÞ ð11Þ

where A(z�1) and B(z�1) are polynomials to be determined and
ex(y) stands for all unknown disturbances from X and Y axis.
Polynomial A(z�1) and B(z�1) correspond to the typical discrete-
time polynomial form as

Aðz�1Þ ¼ 1þa1 � z�1þa2 � z�2

Bðz�1Þ ¼ b0þb1 � z�1

(
ð12Þ

Therefore, the purpose of online system identification is to
correctly estimate a1, a2, b0 and b1 that contain all dynamic
information for each axis.

3.2. Online system identification

Eq. (11) can be considered as a typical least square form below
though disturbances may enter at any place into the control
system as any form. For nth estimation,

sxðyÞðtÞ ¼jT ðt�1ÞyþeðtÞ ð13Þ

where

y¼ ða1a2b0b1Þ
T

jT ðt�1Þ ¼ ð�sxðyÞðt�1Þ � � � �sxðyÞðt�nÞf xðyÞðtÞ � � � f xðyÞðt�nÞÞ

(
ð14Þ

The parameters described in the above equation can be
estimated by the recursive least square method as [13],

ŷðtÞ ¼ ŷðt�1ÞþGðtÞeðtÞ

GðtÞ ¼ Pðt�1Þjðt�1Þ rþjT ðtÞPðt�1ÞjðtÞ
� ��1

PðtÞ ¼ I�KðtÞjT ðtÞ
� �

Pðt�1Þ=r

8>><
>>: ð15Þ

Stochastic errors can be represented as

eðtÞ ¼ sxðyÞðtÞ�jT ðtÞŷðt�1Þ ð16Þ

where G is the gain and P is the covariance matrix. r is the
forgetting factor that reflects the relationship between converging
rate and tracking ability and it falls into 0 and 1 [13]. A larger
forgetting factor represents a more trust on the previous data and
low identification sensitivity. For the X–Y machine, r is chosen as
0.99 for a fast identification speed and moderate converging
ripples for both axis of motion. For initial states, P(0) can be
chosen as r� I4�4 with r as a constant value of 20 and I4�4 is a
four-dimension unit matrix. If the relative error from the present
and last step is comparatively small, it can be regarded that the
present estimated value is correct. Then the criterion to terminate
the program for the recursive calculation can be set as

ŷðtþ1Þ�ŷðtÞ

ŷðtÞ

�����
�����oz ð17Þ

where z is a small positive number.

3.3. Adaptive controller design based on pole-placement

The adaptive controller design is based on the results of the online
parameter identification, which can represent system dynamics of
the machine in real-time. Based on the pole-placement algorithm,
the structure of the proposed adaptive controller can be depicted as
shown in Fig. 3 with the discrete representation as

Tðz�1Þ � xðtÞ ¼ Rðz�1Þ � uðtÞþMðz�1Þ � yðtÞ ð18Þ

where x(t) and y(t) are input and output variables. u is control output
and R(z�1), T(z�1), M(z�1) are polynomials to be determined and
R(z�1) is assumed to be a monic polynomial as

R¼ 1þrz�1

M¼m0þm1z�1

(
ð19Þ

The relationship between total force command input fx(y) and
control output u for the motion system of X or Y table can thus be
represented as

Tðz�1Þ � f xðyÞðtÞ ¼ Rðz�1Þ � uðtÞþMðz�1Þ � sxðyÞðtÞ ð20Þ

with the causal conditions to be met as deg MrR and deg TrR in
the discrete time base. Suppose the desired closed loop pole and
zero polynomials are Am and Bm, respectively. The goal of the
pole-placement design is to specify the desired closed loop poles
so that system output perfectly tracks the input command to
achieve high-precision position control performance. Therefore,
the closed loop pole equation can be represented as

Aðz�1ÞRðz�1ÞþBðz�1ÞMðz�1Þ ¼ A0ðz
�1ÞAmðz

�1Þ ð21Þ

where A0(z�1) is referred as the observer polynomial that can be
cancelled by zeros [14]. Am(z�1) is the desired pole polynomial.
Causality conditions are denoted as follows,

deg A0ðz
�1Þ � Amðz�1ÞZ2deg Aðz�1Þ�1

deg Amðz�1Þ�deg Bmðz�1ÞZdeg Aðz�1Þ�deg Bðz�1Þ

(
ð22Þ

where polynomial Bm(z�1) contains the desired closed loop zeros.
Polynomials A(z�1) and B(z�1) contain system information for

the denominator and numerator of the discrete transfer function
described in Eq. (21), respectively, and the coefficients can be
derived from online parameter estimation. A(z�1) and B(z�1) are
coprime with A(z�1) as a monic polynomial. The closed loop



Fig. 4. Flow chart of identification and control.
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control output thus can be represented as [14],

sxðyÞðtÞ ¼
Bðz�1ÞTðz�1Þ

Aðz�1ÞRðz�1ÞþBðz�1ÞMðz�1Þ
� f xðyÞðtÞ

þ
Bðz�1ÞMðz�1Þ

Aðz�1ÞRðz�1ÞþBðz�1ÞMðz�1Þ
� eðtÞ ð23Þ

The main goal for the pole-placement design is to specify the
desired closed-loop characteristic polynomial A0(z�1)Am(z�1). A
controller design with no cancellation of zeros is applied with the
desired closed-loop transfer operator as

Hmðz
�1Þ ¼ b

b0þb1z�1

1þam1z�1þam2z�2
ð24Þ

where b¼((1þam1þam2)/(b0þb1)) with b as the unit steady state
gain. Then Eq. (24) becomes,

ð1þa1z�1þa2z�2Þð1þrz�1Þþðb0þb1z�1Þðs0þs1z�1Þ

¼ ð1þam1z�1þam2z�2Þð1þa0z�1Þ ð25Þ

Solving for r, m0 and m1, we have [14],

r¼
a0am2b2

0þða2�am2�a0am1Þb0b1

b2
1�a1b0b1þa2b2

0

þ
ða0þam1�a1Þb

2
1

b2
1�a1b0b1þa2b2

0

ð26Þ

m0 ¼
b1ða0am1�a2�am1a1þa2

1þam2�a1a0Þ

b2
1�a1b0b1þa2b2

0

þ
b0ðam1a2�a1a2�a0am2þa0a2Þ

b2
1�a1b0b1þa2b2

0

ð27Þ

m1 ¼
b1ða1a2�am1a2þam2a0�a2a0Þ

b2
1�a1b0b1þa2b2

0

þ
b0ðam2a2�a2

2�a0am2a1þa0am1a2Þ

b2
1�a1b0b1þa2b2

0

ð28Þ

Since the disturbances are relatively slow compared to the
input command signal, polynomial R(z�1) can be considered with
factor of (z�1

�1) as [14],

ðz�1�1ÞvðtÞ ¼ xðtÞ ð29Þ

where x(t) stands for the white noise. For cancellation of dis-
turbances, the factor (z�1

�1) can be included by requiring R(z�1)
with the form of,

Rðz�1Þ ¼ ðz�1�1ÞR0ðz�1Þ ð30Þ

where R0(z�1) is a polynomial. If the solutions are R0, M0 and T0

and polynomials R(z�1), T(z�1) and M(z�1) satisfy the following
equations, then we have,

Rðz�1Þ ¼ ðz�1�1ÞR0ðz�1Þ ¼ Xðz�1ÞR0
ðz�1Þþsðz�1ÞBðz�1Þ

Mðz�1Þ ¼ Xðz�1ÞM0
ðz�1Þ�sðz�1ÞAðz�1Þ

Tðz�1Þ ¼ Xðz�1ÞT0
ðz�1Þ

8><
>: ð31Þ

System output becomes,

sðtÞ ¼
Xðz�1ÞA0ðz

�1ÞBmðz�1Þ

Xðz�1ÞA0ðz�1ÞAmðz�1Þ
� FðtÞþ

Bmðz�1ÞR0ðz�1Þ

Xðz�1ÞA0ðz�1ÞAmðz�1Þ
� xðtÞ ð32Þ

It can be concluded from the above equation that the system
output can track the input command in a desired manner and it is
insensitive to the load disturbances with polynomial X(z�1) and
A0(z�1) if chosen as stable polynomials [15]. From the above
deductions, the identification and control process can be depicted
as shown in Fig. 4 for each axis of motion.

3.4. Convergence analysis of the adaptive controller

Convergence analysis for the identification process can be
expressed as follows. For time invariant stochastic systems with
the form of,

yðtÞ ¼jT ðtÞ � yðt�1ÞþvðtÞ ð33Þ

where y(t) is the output of the system, y is the time-varying
parameter vector of the system to be identified with y(t)ARn,
j(t)ARn is the regressive information vector and {v(t)} is a
stochastic noise sequence with zero mean. The least square
algorithm with the forgetting factor for identifying the time-
varying parameter vector of model (33) can be described as

_
yðtÞ ¼

_
yðt�1ÞþPðtÞjðtÞ½yðtÞ�jT ðtÞ

_
yðt�1Þ� ð34Þ

P�1
ðtÞ ¼ rP�1

ðt�1ÞþjðtÞjT ðtÞ, 0oro1 ð35Þ

where
_
yðtÞ denotes the estimate of y(t), r is the forgetting factor, P(t)

is the covariance matrix with P(0)¼P040, and
_
yð0Þ is a random

variable with E½
_
y

T
ð0Þ
_
yð0Þ�rM0o1. {v(t)} and

_
yð0Þ are independent.

Lemma 1. For the system and algorithm denoted in (33)–(35),
respectively, if there exist constants 0oarboN and an integer
NZn such that, for any t40, the following strong persistent
excitation condition holds,

aIr
1

N

XN

i ¼ 1

jðtþ iÞjT ðtþ iÞrbI ð36Þ

Then for 0oro1, P(t) satisfies,

rN�1

1�r aIrP�1
ðtÞr

Nb
1�r I ð37Þ

Proof. From [16], we have,

P�1
ðtÞ ¼ rP�1

ðt�1ÞþjðtÞjT ðtÞr
Xt

i ¼ 1

rt�i½NbI�þrtP�1
ð0Þ
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¼
Nb

1�r
Iþrt P0

�1
�

Nb
1�r

I

� �
ð38Þ

and,

NP�1
ðtÞ ¼N

Xt

i ¼ 1

rt�ijðiÞjT ðiÞþNrtP�1
ð0ÞZ

Xt�Nþ1

i ¼ 1

rt�i½NaI�þNrtP0
�1

¼
rN�1

1�r NaIþNrt P0
�1
�

a
1�r I

� �
ð39Þ

This completes the proof of Lemma 1.

Theorem 1. For the system denoted in (33) and the least square
with forgetting factor (LSFF) algorithm depicted in (34) and (35),
assume that condition (36) holds, then we can have,

E½v2ðtÞ� ¼ s2
vðtÞrs2

vo1
E½vðtÞvðiÞ ¼ 0�, ta i

E½jðt�iÞvðtÞ� ¼ 0, iZ0

8><
>: ð40Þ

The parameter change rate wðtÞ9yðtÞ�yðt�1Þ is bounded, and

{w(t)} and {v(t)} are independent, i.e.,

E½JwðtÞJ2
� ¼ s2

wðtÞrs2
wo1

E½wðtÞwT ðiÞ� ¼ 0, ta i, E½wðtÞvðiÞ� ¼ 0

(
ð41Þ

Then as t-N, the estimation error for
_
yðtÞ given by the LSFF is

uniformly bounded as

E J
_
yðtÞ�yðtÞJ2

h i
r3a�2r2ðt�Nþ1Þð1�rÞ2JP0

�1J2M0

þ
3nð1�rÞ
arN�1

sup
t

E v2ðtÞ
	 


þ
3N2b2

a2r2ðN�1Þð1�rÞ2
sup

t
E JwðtÞJ2
h i

9f ðr,tÞ

ð42Þ

Detailed proof for condition (40) and (41) can be found in [17].

Theorem 2. For time invariant stochastic systems denoted in
(33), assume that condition (36), (40) and (41) hold, then ½ŷðtÞ�
given by the LSFF algorithm satisfies [17],

E J
_
yðtÞ�yJ2

h i
r2a�2r2ðt�Nþ1Þð1�rÞ2JP0

�1J2M0

þ
2nð1�rÞ
arN�1

s2
v9f 2ðr,tÞ ð43Þ

where sv is the variance of v(t). Eq. (43) denotes that for any t40,
there exist constants 0oarboN, integer NZn and a bounded
constant M0 that the LSFF algorithm gives a bounded mean square
parameter estimation error (PEE) and the PEE converges to zero in
a mean square sense [17].

Since the relationship of controller input and output can be

expressed in Eq. (21), the adaptive controller output is obtained

from adjusting R(z�1), T(z�1), and M(z�1) based on the result of

system identification results. If Am(z�1) that contains the desired

closed loop poles are assigned with values enclosed by the unit

circle in z-plane, the stability of the system based on the adaptive

controller with the pole-placement algorithm can be ensured [14].

According to Eq. (7), the transfer function of the controlled

plant can be further represented as

pðsÞ ¼
K

MxðyÞs2þBxðyÞs
ð44Þ

where K is a constant of 1000, the conversion of meter to

millimeter.
The closed loop transfer function in continuous form then can

be expressed as

GðsÞ ¼
K

MxðyÞs2þBxðyÞsþK
ð45Þ

With zero-order hold and the sampling time of T¼0.001, the

discrete transfer function can be obtained through z-transform as

GðzÞ ¼ Z
1�e�Ts

s
� GðsÞ

� �
ð46Þ

4. Motion control system

4.1. Current controller

Considering the mechanical resonance of the mover from the
machine, the bandwidth for the position controller is in the order
of 10 Hz [18], therefore the two-time-scale control topology can
be applied. Since the dynamics from the mechanical variable
position is much slower than that of the electrical variable
current, the electromagnetic variables can be considered to have
remained in the steady states when all mechanical variables are
taken into account. Therefore, the mechanical variables can be
regarded as unchangeable when the electromagnetic variables are
considered. The fast inner loop controller is employed to trace the
currents through the motor windings with a sampling rate in the
range of 10 kHz to correct current errors in time, while the slower
outer loop position controller is used to track the reference
position profiles.

For the current controller from either axis, three asymmetric
bridge pulse width modulation (PWM) inverters are employed so
that high dynamic response can be enjoyed independently in each
phase for less current ripples [9]. At the side of PWM drive, the
relationship between output current and input voltage for any
one phase is,

_ik ¼�
R

Lkðx,iÞ
� ik�

@Lkðx,iÞ

@x
� _x �

1

Lkðx,iÞ
� ikþ

1

Lkðx,iÞ
� Vk ð47Þ

where ik is output current, Vk is input voltage. R is the winding
resistance and Lk is phase inductance.

Eq. (47) can be further expressed as,

_ik ¼�
R

LkðxÞ
� ikþ

C

LkðxÞ
� Uk ð48Þ

where C is the converter gain, and Uk is the controller input. The
system plant can be represented as a first-order system,

HðsÞ ¼
Kc

LksþR
ð49Þ

where Kc is a constant. A modified proportional integral (PI)
controller is applied for current regulation and the transfer
function governing the controller is as follows,

GðsÞ ¼
ikðsÞ

inkðsÞ
¼

KcðKpsþKiÞ

Lks2þðRþKcKpÞsþKcKi
ð50Þ

Noticing that KcKpcR, the transfer function can be further
simplified as

GðsÞ ¼
ikðsÞ

inkðsÞ
¼

KcðKpsþKiÞ

Lks2þðRþKcKpÞsþKcKi

¼
ðKcKp=LkÞsþðKcKi=LkÞ

s2þðKcKp=LkÞsþðKcKi=LkÞ
ð51Þ

The coefficients Kp and Ki then can be determined from the
damping factor and natural frequency of a typical second-order
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system as

Kp ¼
2BonLk

Kc
ð52Þ

Ki ¼
o2

nLk

Kc
ð53Þ

By choosing a proper value of Kp and Ki, the error will diminish
to zero within a relatively short time and an overshoot free
response can be achieved [8].

4.2. Speed controller design

In servo control applications, speed regulation is often
employed to ensure that the machine follows a designated
velocity reference profile and provides corresponding transients
for the trajectory control loop. Between the inner current and
outer trajectory loop, an intermediate loop of speed regulation is
applied to regulate speed profiles and improve machine perfor-
mance. For high-precision servo control applications of the
proposed X–Y table, it is recommended that a proper speed
control loop is implemented and inserted between the current
and position control loop. To simplify the design of the speed
control loop, it is assumed that the delay of the current loop is
negligible due to the fact that usually the speed of response of the
current loop is at least ten times faster than the response of the
speed loop [8].

For any one axis of motion, neglecting load force, the transfer
function that governs the speed behavior of the X–Y table can be
represented as follows,

HðsÞ ¼
K

MxðyÞ � sþBxðyÞ
ð54Þ

If a simple PI controller is applied for speed regulation of both
axis of motion for transfer function C(s), from the speed control
block diagram depicted in Fig. 5, the transfer function of speed
response can be represented as

Vn

xðyÞ

VxðyÞ
¼ K

Kvp � sþKvi

MxðyÞ � s2þðBxðyÞ þKvpÞ � sþKvi
ð55Þ

where Kvp and Kvi are the proportional and integral gain for the
speed controller. The transfer function has two poles and only one
zero. Since the integral gain Kvi is comparatively much smaller
than the proportional gain Kvp [8], the only zero can be neglected
and the transfer function can be further simplified as

Vn

xðyÞ

VxðyÞ
¼ K �

Kvp � s

MxðyÞ � s2þðBxðyÞ þKvpÞ � sþKvi
ð56Þ

The transfer function can be considered as a typical second-
order control system with proportion K. The damping factor and
natural frequency thus can be found as follows,

2Bsos ¼
BxðyÞ þKvp

MxðyÞ

o2
s ¼

Kvi

MxðyÞ

8<
: ð57Þ
Fig. 5. Block diagram of speed control.
The coefficients from the speed control loop Kvp and Kvi then can
be determined from Eq. (57). By choosing a proper value of Kvp and
Kvi, the error will diminish to zero within a relatively short time and
an overshoot-free response can be achieved [8]. With Kvp and Kvi

gains are tuned as 5 and 0.2, respectively, an overshoot-free speed
response for the X-table control system can be expected.

The experimental result for step response of the X-table can
be found in Fig. 6. It takes the moving platform for 0.15 s to
reach the destination velocity reference. The output waveform
does not exhibit any overshoot with the proposed proportional
and integral gains applied, which proves that the PI controller
employed in the speed control loop maintains a desirable tracking
response.

4.3. Position controller with multi-phase excitation and linearization

The operation of the outer position control loop is based on the
assumption that the current and speed controllers have perfect
tracking capability. For smooth operation with moderate force
ripples and noise, a multi-phase excitation scheme is applied for
each axis of motion and a linearization scheme is employed to
calculate phase force command according to required total force
command [18]. For each axis of motion, the multi-phase excita-
tion scheme can be found in Table 2 [19].

Since SR motors behave highly nonlinear relationship of torque
(force) respective to current and position, a linearization scheme is
applied for each LSRM. To optimize between computation efficiency
and memory consumption, a pair of low-resolution 2D 27�27-
matrix look-up tables are used for each axis of motion with bi-linear
interpolation to calculate the intermediate values. This produces a
considerably low worst-case deviation from the original non-
linear function and the output values can also follow a smooth
profile [18]. The overall position control diagram with the proposed
adaptive controller can thus be derived as shown in Fig. 7. The
multi-phase excitation scheme first determines which phase(s)
should be excited according to current position sx(y) and force
command fx(y). Then force reference values fk(k¼a,b,c) for the
excited phase(s) is assigned according to Table 2 from the force
command for the X or Y table. Next, the inverse relationship of
current command inkðk¼ a,b,cÞ from each phase can be derived from
the 2D look-up table. Last, actual current ik(k¼a,b,c) are output from
the current controllers.
5. Implementation results

The experiment is implemented with a PCI-based dSPACE
DS1104 controller card. The interface circuit from the control
board consists of two 24-bit digital incremental encoder channels
to provide velocity and position feedback from each axis. The
current drivers receive command signal from the digital-to-
analog converters and supply current excitations to each phase
for two-axis of motion.

The control algorithm is programmed in MATLAB/SIMULINK

platform and can be converted into C code after compilation
and downloaded to the DSP chip of the controller card. Control
parameters are regulated online and current status of the control
system are displayed accordingly.

5.1. Parameter identification

Since the LSRM from each axis of motion cannot self start
under the adaptive algorithm, PID regulator is implemented for
closed loop position control and online parameter identification.
The position algorithm is switched to the adaptive controller after
parameter identification is complete. As shown in Fig. 8 the



Fig. 7. Position control block diagram for one axis of the machine.

Table 2
Multi-phase excitation scheme for X or Y table.

Range (mm) Force command (f40) Force command (fo0)
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Note: a¼2p� x(y)/12, b¼a�2p/3, g¼a�4p/3, 0 mm is the fully aligned position from phase a.

Fig. 6. Experimental results of speed response.
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identification results under PID regulator, it takes about 1.5–2 s
for all parameters to converge. Since mechanical and electrical
parameters are distinct from each axis of motion, the correspond-
ing identification results are different. After the identification
process is stable, the adaptive controller can be implemented to
replace the PID method.
5.2. Performance test

For comparison of control performance between PID and the
adaptive control method, control variables from both PID and
adaptive control are regulated for the same state and they remain
unchanged though operation conditions are varied. Parameters



a1 = 0.095

b0 = 0.012

b1 = −1.931

a2 = 1.010

a1 = 0.083

a2 = 1.032

b0 = 0.008

b1 = −1.854

Fig. 8. Results of parameter identification (a) X table (b) Y table.

Table 3
Parameter regulation.

Parameter Nominal state (20 mm, 3 s)

X Y

P 0.2 0.9

D 1.1 9.0

I 0.001 0.002

am1 �1.93 �1.935

am2 0.938 0.938

bm0 �0.850 �0.850

bm1 �0.800 �0.800

r 0.99 0.99

Fig. 9. Dynamic response from each axis of motion (a) X axis and (b) Y axis.
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for square wave operation with amplitude of 20 mm and period of
3 s are regulated as the nominal state with parameters tabulated
in Table 3 and dynamic error profiles shown in Fig. 7 for each axis
of motion. It is clear from the shifted response waveforms from
the two controllers that overshoots are relatively huge with large
static errors for the PID controller for each axis of motion.
However, the performance under the adaptive controller provides
a smooth dynamic transition and a static error of 72 and
72.5 mm for X and Y axis, respectively. The parameters for PID
and adaptive controller are illustrated in Table 3 and all remain
unchanged for composite command references. The dynamic
response for each axis of motion can be found in Fig. 9.

For actual operations under composite command of the
machine, command for each axis can be designed independently
from a decoupled motion structure. The response of the X–Y

machine when drawing a line is shown in Fig. 10 under the
position command of square waveform with 01phase difference.
Since there are sharp transitions for a square profile, dynamic
performance deteriorates at each corner from the PID controller.
However, the response from the adaptive controller provides a
reasonable overshoot and dynamic errors.

Sinusoidal command reference is also selected for perfor-
mance test. Under the compound command signal, the table will
draw a circle with uniform position command and a line with
1801 phase difference as shown in Fig. 11. It is clear that the



Fig. 10. Response of the machine—line.

Fig. 11. Trajectory response—circle.

Fig. 12. Trajectory response under disturbance.
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tracking profiles are more precise under the adaptive controller
than PID.
5.3. Test of robustness

To further test machine performance under the interference
environment, a constant force disturbance of 15 N is added before
the position controller block to the X axis table with all control
parameters unchanged. To avoid severe change of operation
under disturbances, a third-order S-profile with smooth transi-
tions from rising and declining part of the waveform is applied as
the position command [20]. As shown in Fig. 12, the tracking
profile under PID controller continuously experience relatively
large errors and it is not capable of correction for such disparities.
However, the adaptive controller is able to compensate force
disturbance with a reasonable dynamic and static response at the
same time.
6. Conclusion

The design methodology for LSRM-based X–Y machine has
been discussed in this paper. Since traditional machines with
rotary motors and mechanical translators have the disadvantages
of high cost, complex structure and require frequent adjustment
and maintenance, it is expected that the LSRM-based X–Y

machine will be an ideal alternative to the traditional methods
for 2D high-precision translational applications. With the devel-
opment of the adaptive controller, high-precision position control
can be achieved. It can be expected the cost of the processing
components and parts will be significantly reduced if the pro-
posed X–Y table can be successfully employed in the advanced
manufacture area.
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