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Disturbance and Response Time Improvement of
Submicrometer Precision Linear Motion System

by Using Modified Disturbance Compensator
and Internal Model Reference Control

Hoi-Wai Chow, Member, IEEE, and Norbert C. Cheung, Senior Member, IEEE

Abstract—Permanent magnet linear motors are a type of lin-
ear motors that are generally used in precision motion control
applications. However, the position of motor is easily disturbed
by external force, disturbance, and variation in parameters of
plant. Therefore, the construction of the high-precision linear
motion system is a difficult task. This paper implements a modified
disturbance observer and compensator, which includes a novel
variable gain, to overcome the effects of unknown parameters of
the motor, to minimize the effect of the disturbance, and to reduce
the response time of the disturbance. This compensated linear
motor is further controlled by the internal model reference control
algorithm so that the position of the motor can be tracked with ex-
pected response precisely. The authors conducted the experiments
and verified the feasibility of the high-precision positioning con-
trol. Compared with the case of normal disturbance compensator,
the experimental results also illustrate the improvements of the
novel variable gain, which reduces the response time toward the
command signal and the external disturbance.

Index Terms—Disturbance observer and compensator, internal
model reference control (IMRC), permanent magnet linear motors
(PMLMs).

I. INTRODUCTION

THE permanent magnet linear motor (PMLM) is one of
the preferred choices for the actuator of linear motor.

PMLM has several benefits, such as no backlash, less friction,
high thrust density, higher acceleration/deceleration capability,
and low thermal losses. This motor has been widely employed
in industrial applications, and some engineers have attempted
to utilize PMLM to achieve a high-precision linear motion
system by different control algorithms. For example, Park [1]
implemented a hybrid stage motion system using precision
motion controller which consists of a position, velocity control
loop, and an antiwindup compensator. Seshagiri [2] proposed a
“servocompensator” as part of a robust sliding-mode control of
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permanent magnet stepper motors. In [3], Cao and Low applied
a new model predictive control approach on the PMLM with
repetitive tracking tasks. It can effectively reduce the track-
ing error from friction and achieve the high-precision motion
control from the periodic disturbance after 5–20 runs. In [6],
Sung and Huang also implemented the optimal PI controller
with modified integrator and genetic algorithm on the PMLM
to develop a high-precision linear motion system.

The PMLM is usually decided and manufactured for general
linear motion purpose instead of precision motion purpose. The
accuracy of the motor position, however, can be easily affected
by variations in parameters of motor and load disturbances,
including the friction and the ripple force. In order to handle
these disadvantages, many engineers focus on the estimation of
variations or development of nonlinear disturbance model for
the motion system. In [5], Hong and Yao proposed a nonlinear
adaptive robust controller with saturated actuator for a PMLM,
which is subject to parametric uncertainties and uncertain non-
linearities, guaranteed transient performance and final tracking
accuracy, and identified parameter effectively. Huang and Sung
[4] controlled the PMLM using a new function-based sliding-
mode control method and direct thrust control to accomplish
a high-precision linear motion system. They integrate the flux
estimation to determine the magnitude and phase angle of
the controlled motors so that they can solve the chattering,
parameter variations, and external disturbance problems suc-
cessfully. Authors in [7] also demonstrated a compensation
scheme of force ripple based on a model of the disturbance.
The compensation term in this method is applied in parallel to
the position/velocity controller. Chen et al. [8] also developed
a ripple and friction compensation scheme by using hysteretic
relay.

Nevertheless, those solutions require strenuous mathematics
calculation to estimate the plant parameters such as flux and
phase angle so that the control signal could be generated for
high-precision motion control. This tedious mathematics work
will raise the system cost and controller design time. The
inverse-model-based disturbance observer and compensator is
a possible and effective method to eliminate those variations
in parameters and disturbances, including the friction and the
ripple force. The compensated linear motion system will be-
come a linear model, and the control algorithm can be simpler.
Some engineers also apply this attractive technique to control
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Fig. 1. Overall block diagram of the proposed linear motion system.

the PMLM. Yao et al. [9] proposed a controller with an inverse
of the first-order reference model with an input deduction and
integral term. It can reduce modeling uncertainty due to the
unknown of real system and disturbance due to the d−q-axis
coupling effect. Zhang et al. [10] integrated a friction-model-
based feedforward approach and an inverse-model-based dis-
turbance observer to develop a high-precision 2-D system with
two linear motors. The developed systems successfully achieve
a position error of less than 2 µm. In [11], Komada et al.
developed a disturbance observer for PMLM driven under
constant force operation to compensate the effect of parameter
variation, friction, ripple force, and external disturbance force.

However, the described disturbance compensators usually
focus on the compensation process and neglect the response
time for the disturbance. In this paper, the disturbances on
PMLM, including friction, ripple force, and load variation, are
calculated by online measurements. These disturbances are then
eliminated by a disturbance observer and compensator. The dy-
namics of the motor (velocity and position) are being controlled
by an internal model reference control (IMRC) algorithm so
that the outputs of the linear motor (velocity and position) can
track the predefined trajectory. In addition, a variable gain is
employed to modify the conventional compensator. The major
contribution is introducing this variable gain into the con-
ventional distribution observer and compensator. The impact
of this gain is to improve the compensation for the transient
disturbance. This is neglected by the conventional disturbance
compensator. The gain can greatly reduce the response time on
the disturbance and static friction. Another contribution of this
paper is to develop a method to optimize the effect of low-pass
filter (LPF) inside the observer.

II. OVERVIEW OF THE PROJECT

The proposed control method for PMLM is shown in Fig. 1.
A PMLM is driven by a power amplifier which is configured as
current-driven mode. The velocity and the current command are
utilized to estimate the actual disturbances, and this estimation
is converted into a compensation current by the “disturbance
observer and compensator.” This disturbance compensator is
a variable structure which is adjusted based on the position
error and the operating speed so that the response time on the
disturbance can be further improved. The compensated PMLM
(disturbance-free motion system) is controlled by the “IMRC
algorithm” with feedback velocity and position. The detail of
each part will be introduced in the following sections.

III. DESIGN OF DISTURBANCE COMPENSATION

If the PMLM motor is driven under a rated speed, the direct
axis current is equal to zero, the motor will be operated at the
constant force operation [12], and the thrust force Fem from the
motor can be calculated by

Fem = Kf × Is. (1)

Kf and Is in (1) are the force constant and current injected
to the motor. Equation (1) can also act as the model of PMLM.
Although the structure of this model is very simple, many
engineers [11], [13]–[15] also employed (1) during the con-
troller design and achieved the high-precision motion control.
Typically, the direct drive motion system is directly affected by
external disturbances Fdis. In other words, this nonlinear Fdis

perturbs the outputs of the PMLM (velocity v and position x)
directly. Fdis includes load variation, force ripple, and some
unexpected external disturbance. Fem needs to overcome Fdis

and friction to drive the translator of the PMLM. This is
an important issue particularly concerned in precision motion
control system.

Note that the conventional disturbance compensation method
was adopted by many engineers. References [11], [16], and
[17] are some examples using this disturbance compensator to
achieve high-precision linear motion control. In this paper, this
conventional method is modified to form a new compensator.
The design process and the operating principle of a conven-
tional disturbance compensator are therefore first reviewed in
detail.

A. Operation of Conventional Disturbance Observer
and Compensator

In order to minimize the effect of perturbation on PMLM,
the “disturbance observer and compensator” is proposed in this
project. This observer and compensator is based on the idea
mentioned in [11]. The structure of the disturbance observer
and compensator is shown in Fig. 2(a). If the equation of the
“plant” is formulated, the relationship between Is and v will be
arranged as

Is(∆Kf + Kfn) − Fdis = (Mns + ∆Ms + D)v. (2)

M is the mass of the translator of the PMLM, which is the
sum of the nominal mass Mn and the mass deviation ∆M . Kf

is the force constant, which is the sum of the nominal force
constant Kfn and the force constant deviation ∆Kf . D is the
frictional constant. The nominal parameters (Mn and Kfn) can
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Fig. 2. (a) Block diagram of motion system with disturbance observer and
compensator. (b) Simplified block diagram of motion system.

be obtained from the datasheets, and they usually have slight
deviations from their actual values (M and Kf ).

If all nonlinear disturbances, friction, and deviation terms are
grouped together, (2) can be rearranged as

Fcmp =∆Msv+Dv−Is∆Kf −Fdis =IsKfn−Mnsv. (3)

External disturbances Fdis, kinetic frictional force Dv, and
parameter variation ∆Msv − Is∆Kf are grouped as a term
called the compensation force Fcmp, which can be calculated
by measuring Is and v. In fact, this Fcmp has to be compensated
so that the PMLM can be operated as an ideal model given as

Icmd =
Mn

Kfn
sv. (4)

Compared with the compensator in [11], the new proposed
compensator in this paper also compensates the term Dv, which
is not totally rejected by the method in [11].

Since Fcmp is calculated by the derivative of velocity dv/dt,
an LPF has to be inserted to suppress the high-frequency noise
in Fcmp. The function of LPF is named as F (s). The filtered
estimation F ′

cmp is then converted into the compensation cur-
rent I ′cmp by multiplying a gain 1/Kfn. I ′cmp is fed back to
the thrust current Is so that all low-frequency disturbances and
frictional force are compensated.

With the presence of LPF, the equation of the compensated
PMLM will become (5), which is modified from (3). The block
diagram of the system is shown in Fig. 2(b).(

Icmd +
1

Kfn
F (s)Fcmp

)
Kfn − Mnsv = Fcmp

IcmdKfn − Mnsv = [1 − F (s)] Fcmp.

(5)

B. Novel Modification for Disturbance Compensation

The disturbance compensation algorithms mentioned in the
previous sections are the standard disturbance compensator.
In fact, the high-precision positioning control can be achieved
effectively by only using the standard algorithms. However, the

Fig. 3. Modified disturbance compensator for PMLM.

high-frequency components of Fcmp still perturb the outputs
of the “disturbance-free” PMLM. The main source of the high-
frequency components of Fcmp is the presence of static friction.
This section explains the transient disturbance and proposes a
novel modification for a conventional disturbance compensator.
This modification further improves the PMLM to be the ideal
system in (4). The achievement of high-precision linear motion
system can be easier.

Considering the original compensated PMLM shown in (5),
the term [1 − F (s)] × Fcmp appears, and it is the high fre-
quency of Fcmp. Fortunately, the major components of Fcmp are
usually at low frequency, and they can be compensated. How-
ever, the transient disturbances, which are high-frequency com-
ponents, will still affect the outputs of the PMLM. Examples
of transient disturbances are sudden external impact and static
friction. A novel modification, inserting an additional extra gain
Ki, is applied to the conventional disturbance compensator.
The modified compensation block diagram can be modified as
shown in Fig. 3. Considering the compensated PMLM with Ki,
the equations of the plant can be derived as

IsKi(Kfn + ∆Kf ) + Fdis = (Mns + ∆Ms)v + Dv. (6)

This PMLM with Ki can be rearranged as shown in (7), and
those perturbations appearing in this PMLM are grouped and
named as Fcmp2.

IsKfn − Mnsv =Fcmp2

= ∆Msv + Dv − Fdis

− IsKi∆Kf − IsKfn(Ki − 1). (7)

If this Fcmp2 is converted to a compensation current I ′cmp2

and fed back to the PMLM, the equations of the compensated
system can be rearranged as

IcmdKfn − Mnsv = [1 − F (s)] Fcmp2. (8)

Equation (8) can be rearranged into two structures shown in
(9) and (10). They can be used for explaining the properties of
the new disturbance compensated system.

IcmdKfn − Mnsv = [1 − F (s)]
× [Fcmp − IsKf (Ki − 1)] (9)

IcmdKfn − Mnsv = (∆Msv + Dv − Fdis − Is∆KfKi)
× [1 − KiF (s)] − IcmdKfn(Ki − 1)
× [1 − KiF (s)]
+ I ′cmp2Kfn(Ki − 1)F (s). (10)
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The equation format of (8) is the same as (5). This means
that the modified system in (8) can also reject the external
disturbance force, kinetic friction, and parameter variation. The
merit of the modified compensator can be observed from (9).
Equation (9) is rearranged for comparison with (5). An addi-
tional term [1 − F (s)] × [IsKf (Ki − 1)] has appeared in (9).
Since the term 1 − F (s) has a high-pass filtering characteristic,
this additional term can calculate the high-frequency compo-
nents of Is which is composed of the input current command
(Icmd) and the compensation current for Fcmp2(I ′cmp2). In
other words, when the command or disturbance changes sud-
denly, the high-frequency components of Is will be larger,
and extra efforts will be added to the PMLM. The modified
systems will respond to the high-frequency disturbances, such
as impulse disturbance, faster than the conventional compen-
sation system because of the presence of I ′cmp2. In addition,
the modified systems will respond to the current command
Icmd faster because Is includes Icmd. The gain Ki will amplify
the high-frequency components of Icmd and produce additional
effort to drive the PMLM to command inputs.

Inserting Ki can reduce the adverse effect of static friction.
Considering the conventional compensation method shown in
Fig. 2, when the velocity of the PMLM is crossing zero (the
translator reverses its direction or starts moving from rest), the
motor may remain stationary (velocity remains zero) even if
there is current injected to the motor because of the presence of
static friction. Since there is a difference between the expected
thrust force (IsKfn) and the actual thrust force (Mnsv = 0),
the Fcmp will rise quickly, and the effect of static friction will
be reflected in I ′cmp. This I ′cmp is fed back to the translator and
eliminates the effect of static friction after a short period of
time. Note that the effect of static friction is like a transient
force stopping the motor and it belongs to high-frequency
disturbance. Now, referring to the new compensated PMLM in
(9), [1 − F (s)] × [IsKf (Ki − 1)] can provide extra effort to
eliminate the static friction because Is contains I ′cmp2. The time
for eliminating the static friction should be shorter compared
with the PMLM with a conventional disturbance compensator.

Inserting Ki is a possible suggestion for reducing the tran-
sient effect of disturbance and command, but it will also cause
some adverse effects to the output of PMLM if Ki is not chosen
carefully. The term [1 − F (s)] × [IsKf (Ki − 1)] contains a
high-pass filter 1 − F (s), and it does not only pass the high-
frequency components of Is but also allows the noise in Fcmp2

to be injected to the PMLM. The level of noise will be ampli-
fied, and this causes oscillation and audible noise if Ki is too
large.

Equation (10) is the other form of the new compensated
PMLM, and it can be utilized to determine the maximum and
minimum values of Ki. The right-hand side of this equation
consists of three terms. The first term is related to the effect of
parameter variation, kinetic friction, and Fdis. The second term
is related to Icmd, and the final term is related to I ′cmp2. In this
equation, there is a variable filter (1 − KiF (s)) with special
characteristic. Its magnitude plot with different Ki is obtained
as shown in Fig. 4. When Ki is smaller than two, this filter
has the high-pass filtering characteristics. When Ki is equal to
or larger than two, the filter will amplify the signal, instead of

Fig. 4. Magnitude plot of transfer function of 1 − KiF (s) with different Ki.

suppressing the signal, because its magnitude is always larger
than 0 dB. The first term in (10) is expected to be suppressed, so
Ki should not be larger than two. Meanwhile, if Ki is smaller
than one, the response rate of the plant will be deteriorated.
Note that the second and third terms are the high-pass-filtered
Icmd and exceeding I ′cmp2. These two currents provide extra
efforts to improve the dynamic response of the PMLM.

For the practical situation, the effect of high-frequency dis-
turbance will dominate when the translator is near the targeted
position and travels at low velocity. Hence, the proposed addi-
tional gain Ki is designed with the following considerations.

1) When the position error is small and the translator is slow,
Ki is selected to be two.

2) For other cases, the motor is operating at normal condi-
tion, which means that Ki is selected to be one.

However, the profile of Ki should be determined by experi-
ments, and it will be discussed later.

C. LPF Design Criteria

The design of LPF is a critical process of constructing the
“disturbance observer and compensator” since the selection of
cutoff frequency of LPF will directly influence the performance
of compensation. There are four criteria to determine the value
of cutoff frequency gf .

1) The main function of the LPF is to filter the noise in
IsKfn − Mnsv which mainly comes from the differen-
tiation of velocity. The frequency of noise in acceleration
will be fsampling/2, where fsampling is the sampling fre-
quency of the DSP. The cutoff frequency of LPF should be
much smaller than fsampling/2 (i.e., gf < π × fsampling).

2) Considering the input of LPF (IsKfn − Mnsv), the
cutoff frequency of LPF should not be smaller than the
operating frequency of the PMLM system. Otherwise,
the LPF will distort the useful information in this input.
In other words, the gf/2π should be higher than the
operating frequency of the PMLM system.

3) Since the LPF is inserted into the observer and com-
pensator, the model of compensated PMLM will become
the system shown in (5) and (8). 1 − F (s) in these two
equations is a high-pass filter, and only high-frequency
components of Fcmp and Fcmp2 can perturb the outputs
of the PMLM. gf/2π should be slightly higher than all
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Fig. 5. Diagram for IMRC.

dominant components of Fcmp and Fcmp2 in order to
suppress the effect of Fcmp and Fcmp2.

4) Another restriction of gf is caused by the “power ampli-
fier” of the PMLM. Under the current control mode, there
is a current feedback loop inside the power amplifier, and
the current loop will have its own cutoff frequency. The
gf/2π should be smaller than this cutoff frequency.

The LPF implemented in this project is a third-order critical
damping LPF given as

F (s) =

(
1

1
gf

s + 1

)3

. (11)

It is expected that the noise amplitudes of Fcmp and Fcmp2

are very large and the third-order filter can provide a higher cut-
off frequency and high ability of noise suppression. Although
there are many different forms of third-order LPF, the authors
prefer using the aforementioned structure in order to simplify
the process modifying gf during the experiment. In this project,
the possible range of gf is quite wide, and the critical value
must be determined experimentally.

IV. IMRC

The IMRC algorithm [18]–[20] has been proposed for many
decades, but it is seldom employed in high-precision motion
control. It is because this algorithm could not compensate the
nonlinearity of external disturbances and parameter uncertain-
ties in the model. In this paper, the IMRC integrates with
the disturbance observer and compensator so as to develop a
generic controller for PMLM to accomplish the high-precision
linear motion system.

A. Operation of IMRC

IMRC can be explained by Fig. 5. P (s) stands for the actual
process of the system. D(s) stands for disturbance transfer
function. The controller of this algorithm is constructed by
designable transfer function Q(s) and the model of process
Pm(s). The output of the plant is Y (s), and it is formulated as

Y(s)=
P (s)Q(s)R(s)+(1−P (s)Q(s)) D(s)Fcmp2(s)

1+(P (s)−Pm(s)) Q(s)
. (12)

If the model is exactly equal to the process, i.e., Pm(s) =
P (s), the denominator of Y (s) will be equal to one. In addition,
if D(s)Fcmp2(s) is suppressed or compensated to zero, the

Fig. 6. Simplified for IMRC.

overall output of the controlled system in (12) will be modified
to a simple mathematical equation as shown in (13). Since Q(s)
is freely designed, it can be designed as in (14).

Y (s) = P (s)Q(s)R(s) (13)

Q(s) =
1

Pm(s)
M(s) ⇒ Y (s) = M(s)R(s). (14)

M(s) is the predefined model, and R(s) is the input function.
The output Y (s) becomes a predefined trajectory M(s)R(s).
Note that another function of M(s) is to ensure that the transfer
function Q(s) is proper. Therefore, the order of M(s) should
be equal to or higher than that of Pm(s). In addition, P (s) and
Pm(s) should be the minimum-phase system.

Referring to Fig. 5, the controller is composed of the system
model Pm(s) and the transfer function Q(s). They can be
combined to produce a feedback controller C(s) by (15), and
the rearranged block diagram is shown in Fig. 6.

C(s) =
Q(s)

1 − Pm(s)Q(s)
. (15)

B. Implementation of IMRC for PMLM

In this project, this control approach is applied to the PMLM
for the high-precision linear motion control. A cascaded struc-
ture controller with position and velocity feedback is proposed
so that the velocity loop and position loop can be modified
independently. The formulas required in the IMRC are summa-
rized as shown in Table I. Since the model of PMLM has been
already derived as shown in (4), the IMRC control algorithm
for the velocity loop can be formulated easily. The controlled
PMLM will be a system Pv(s) with the input equal to the
required current command Icmd and the output equal to the
velocity of the motor v. The model of the controlled process
can be formulated as Pmv(s). The first-order predefined model
Mv(s) is used, and the proposed transfer function for Qv(s)
is therefore constructed. 1/gv in Mv(s) and Qv(s) is the time
constant of the predefined model, and it will limit the frequency
of the velocity loop.

The IMRC can be further applied to control the position
of PMLM. Consider the process with the position output
Pp(s), which has the velocity command vcmd as input and the
position x as output. Similar to the velocity loop, the transfer
function Pmp(s),Mp(s), Qp(s) can be formulated. Note that
the predefined model for position loop Mp(s) is designed as
a second-order function because the Pmp(s) is a second-order
system. The time constant 1/gx limits the frequency of the
position loop.
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TABLE I
FORMULAS FOR IMRC

Fig. 7. Block diagram for entire control algorithm.

In order to simplify the structures of the controllers in both
loops, the Q(s) and M(s) are combined to formulate Cv(s) and
Cp(s). The overall control algorithm is shown in Fig. 7.

C. Stability of the Controlled PMLM With IMRC

Considering the entire system of new compensated PMLM
with IMRC controllers, the position output equation can be
derived as

X =Xcmd
1(

1
gx

s+1
)2

−Fcmp2




[(
1
gf

s+1
)3

−1
] (

1
g2

x
s+ 2

gx

)
(

1
gf

s+1
)3

(Mns+Mngv)
(

1
gx

s+1
)2


 (16)

X =XcmdH1(s)−Fcmp2H2(s). (17)

The stability of (16) can be ensured by studying the locations
of poles of H1(s) and H2(s). All the poles of H1(s) and H2(s)
appear at the left-hand side of the s-plane. The linear motion
system controlled by IMRC is, therefore, a stable system.
Note that Fcmp2 is bounded and will be shown by experiment.
Regarding the effect of Ki on the stability of outputs, as
mentioned in Section III-B and (10), if Ki is smaller than two,
the disturbances will not be amplified, and Fcmp2 will also
remain bounded. Overall, the system outputs will be stable if
Ki is not larger than two.

V. HARDWARE IMPLEMENTATION AND RESULTS OF

DISTURBANCE COMPENSATION AND IMRC

In order to investigate the actual performance of the proposed
control method and algorithm, the experimental setup shown
in Fig. 1 was connected. The linear motor used in this project
was a PMLM (Servotube Module, SM1104, Copley Control
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Corporation) which was driven by a servo driver (digital servo
drive, ADP-090-09-S, Copley Control Corporation). The posi-
tion sensor installed on the actuator was a linear incremental
optical encoder (linear incremental optical encoder with 50-nm
resolution, RGH24H30D30A, Renishaw). The terminals of the
optical linear incremental encoder and the current input termi-
nal in the amplifier were connected to a DSP (dSPACE Digital
Signal Processing PCI board with fsampling = 20 kHz, model
no: dSPACE-1104). This powerful DSP allows the user to
input the control algorithms through the simulink of MATLAB.
The algorithms in time-continuous format (in s-domain) were
transformed to the program code and uploaded to the real-time
processor inside the DSP. During the experiment, the results and
data can be stored by the DSP and plotted out for presentation.
Note that the maximum current from the amplifier is 3 A and
the maximum measurable speed of the encoder is 0.35 m · s−1.

The new proposed disturbance compensator is based on
the conventional disturbance compensator, so the first step of
experiment was to develop a compensated PMLM as shown
in (5). gf was determined and optimized experimentally. The
IMRC control algorithms for the velocity loop and position loop
were implemented. The performances of this compensated and
controlled PMLM were studied. The results were recorded for
comparison with the new proposed method.

With the help of IMRC, the position and the velocity of the
PMLM can be controlled. The effects of Ki on the PMLM were
investigated. The PMLM was driven with different command
inputs and different Ki. The performances of the new proposed
system were studied. The shape of Ki was then determined
based on these results. With the optimized profile of Ki, the
new proposed method was implemented. The performances of
compensated PMLM with the new method were also investi-
gated, and the results were studied.

A. Disturbance and Parameter Perturbation Measurement

As mentioned in Section I, many textbooks and engineers
have already discussed and pinpointed the major difficulties
of using PMLM to achieve a precision linear motion system.
The difficulties include variations in parameters of motor, load
disturbances, unexpected external disturbance force, friction,
and the ripple force. Instead of handling the difficulties one
by one, they are estimated and compensated by a single
process.

An experiment to observe the disturbance in the PMLM at
different position was conducted. The disturbances acting on
the translator of the PMLM were measured, while the translator
was commanded to travel forward and backward slowly. This
experiment was repeated with two different velocities. The
estimated disturbances are shown in Fig. 8. The disturbance
acting on the PMLM was very complicated and not easy to be
decomposed. In addition, if the traveling speed of the motor
is adjusted, the curve of disturbance will change accordingly.
Note that the measured disturbances are given by a lower
curve and an upper curve. They were obtained when the motor
traveled in the positive direction and the negative direction,
respectively.

Fig. 8. Measured disturbance of noncompensated PMLM.

B. Conventional Disturbance Compensation

The “disturbance observer and compensator” shown in Fig. 2
was constructed. Referring to the original disturbance compen-
sation algorithm, there is one parameter, gf , which needed to be
determined. The constraints in Section III-C are investigated.

1) The minimum amplitude of noise in Fcmp can be roughly
deduced from the resolution of the optical incremental
encoder. The resolution of the measured acceleration is
20 m · s−2. Based on (3), Fcmp = (Icmd + I ′cmp)Kfn −
Mnsv, the minimum deviation in Fcmp will be Mn ×
20 = 9 N. The deviation in nonfiltered compensated
current F ′

cmp/Kfn is 9/4.1 = 2.195 A. If this current
deviation is injected to the PMLM, the audible noise
and high-frequency oscillation in the position of PMLM
will result. The frequency of this noise can be calculated
by fsampling/π. The cutoff frequency gf/2π should be
smaller than this value.

2) The operation frequency of the positioning system was
designed to be 25 Hz. It is the general operation frequency
in many industrial applications. gf/2π should be much
greater than 25 Hz.

3) Based on the measurement of disturbance shown in
Fig. 8, the disturbances and perturbations are related to
the position and the velocity. This means that the fre-
quency of Fcmp or Fcmp2 is also related to the operating
frequency of the system. Thus, gf/2π should be much
greater than 25 Hz.

4) The cutoff frequency of the current driver of PMLM is
3.2 kHz. The maximum value of gf will be 2π × 3200.
However, gf should be much smaller than 2π × 3200
because the LPF has to suppress the noise in estimated
Fcmp.

The possible range for gf is also wide. In order to optimize
gf and achieve the high-speed compensation and the noise
suppression, the performances of disturbance compensators
with different gf were investigated through the experiments.

The square wave current commands (with different ampli-
tudes ranging from 0.1 to 0.35 A, with period equal to 0.4 s)
were inputted to the disturbance compensated PMLM. The
waveforms of compensated currents I ′cmp were recorded. The
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Fig. 9. Time to override static friction versus gf .

Fig. 10. RMS value of noise in Icmp versus gf .

times of rejecting the static friction were obtained, and the
rms values of the noise in I ′cmp were also recorded. The
aforementioned experiments were repeated with different gf .
During the experiment, when gf was larger than 2 × π × 450,
the PMLM generated audible noise, and this value was treated
as the maximum limitation of gf . The relationship between gf ,
rejecting time, and rms value of noise was studied, and their
plots are shown in Figs. 9 and 10.

It is obvious that the times of eliminating the static friction
generally decrease with the gf while the rms values of noise
increase with gf . There should be a tradeoff point optimizing
the performance of the disturbance compensator. Regarding the
times of rejecting the static friction, larger gf can reduce the
time. However, the effect of time reduction is not significant
when gf is larger than 2 × π × 150. That means the minimum
value of gf should be 2 × π × 150. Considering another plot
related to the noise of I ′cmp, the implication from this plot is
that gf has to be kept at a small value in order to minimize the
noise level. No specific indication in this plot can define the
maximum value of gf .

Another condition can help to determine the value of gf .
Based on the common practice, the cutoff frequency of inner
loop should be at least three times larger than that of the outer

Fig. 11. Experimental results for performance of disturbance compensator
with 0.1-A step input amplitude.

loop. The ratios between gf , gv , and gx (cutoff frequency
of different controlled loops) have to satisfy the following
relationship:

gf > 3 × gv > 9 × gx. (18)

Since the expected operating frequency of a PMLM system
is 25 Hz, gx should be 2 × π × 25. In this paper, gf is chosen
to be 2 × π × 250.

To further investigate the performance of the disturbance
compensator with gf = 2π × 250, an experiment was per-
formed with a square wave current command (amplitude equal
to 0.1 A). The experimental results are shown in Fig. 11.
Based on the Icmd–time, velocity–time, and acceleration–time
graphs, the function of disturbance compensator is achieved.
The results agree with the ideal model shown in (4) except when
the velocity is nearly zero. This difference is due to the presence
of static friction. At that moment, the disturbance compensator
has detected the static friction. I ′cmp will increase or decrease
with a short period of time, which aims to reject this static
friction. The response time of the compensator results in a
difference between the ideal model shown in (4) and the actual
performance. Referring to Fig. 11, the value of acceleration
drops to zero when the speed is around zero. This phenomenon
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Fig. 12. Experimental results of controlled PMLM by standard IMRC algorithm (minimum step, with amplitude of square wave = 100 nm).

is also caused by the static friction. Note that the acceleration
shown in Fig. 11 is filtered acceleration since the original noise
of calculated acceleration is too large.

Another observation is related to the performance of the
filter F (s). The noise in Icmp will be very high if there is
absence of F (s). This can be observed in Fcmp. The presence
of a third-order LPF can greatly reduce the noise amplitude to
0.01–0.02 A and provide effective disturbance compensation.

C. IMRC

The IMRC controller shown in Table I is implemented. Since
gf is selected as 2 × π × 250, the value of gv and gx can be
defined as 2 × π × 80 and 2 × π × 25, respectively. With these
two parameters, the IMRC controller with cascaded structure
was constructed. Two experiments of step responses (with min-
imum step and critical condition step) were performed. Their
experimental results are shown in Figs. 12(a) and 13(a). The
minimum step means that the step amplitude is one deviation
of position error (equal to two resolutions of the optical linear
incremental encoder = 100 nm). The critical condition step
refers to the current or velocity of PMLM near saturation or
reaching the maximum value. Another experiment illustrating
the response time on external disturbance was also performed,
and the results are shown in Fig. 14(a).

Although the compensated PMLM with IMRC algorithm
can achieve the submicrometer precision linear motion system
(with steady-state deviation equal to 100 nm), the performance
of this linear motor is still not satisfactory. The major problem
of the conventional method is the rising time of the position
output. The rising time of controlled position output should

be 0.05 s. However, the rising time of the minimum step
response, shown in Fig. 12(a), is 0.116 s. This long rising
time phenomenon is caused by the static friction and slow
response rate of the disturbance compensator. Considering the
overall control algorithm shown in Fig. 7, when the translator is
commanded to move a very small distance, the position error
is very small [error is ±0.2 mum, as shown in Fig. 12(a)].
The gains of Cp(s) and Cv(s) should be about 63 and 55.2,
respectively. The peak transient current calculated from the
position error will be 0.696 mA. It is a very small current and
definitely too small to overcome the static friction and drive
the translator to move. Although the Icmd (0.696 mA) is not
large enough to drive the translator, the I ′cmp can assist the
motor to overcome the static friction. If the Is–time graph in
Fig. 12(a) is considered, this current contains low-frequency
components, which is exponentially rising and falling (in fact,
it is I ′cmp). This I ′cmp is accumulating slowly to overcome the
static friction. In other words, the response time of the system
is slow because of the rising time in Is. Note that the problem
of long settling time in position output is particularly serious
when the position input command is too small.

Referring to the experimental results of critical step response,
shown in Fig. 13(a), it is obvious that the peak current is 3 A
and reaching its maximum value. Compared with the velocity
of the translator, the current Is reaches its limit much faster.
This phenomenon is due to the fact that gf is larger than gv .

The rising time shown in Fig. 12(a) is smaller than that in
Fig. 13(a). It is because larger Icmd can provide larger effort to
trigger the translator to move and overcome the static friction.
This explanation can be supported by the Is–time graph. If
the step size is larger, the Icmd will dominate in Is. When the



148 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 60, NO. 1, JANUARY 2013

Fig. 13. Experimental results of controlled PMLM by standard IMRC algorithm (critical situation step, with amplitude of square wave = 800 µm).

Fig. 14. Experimental results of controlled PMLM by standard IMRC algorithm (with impulse contact force disturbance).

position command is changed, the Is becomes a large value,
and this does not happen in the minimum step response.

Based on the information from the error–time graph in
Fig. 13(a), the unexpected overshoot appears despite the fact
that the critical damping model is used. The time-delay prop-
erties of LPF in disturbance compensator possibly cause this
small overshoot. The excessive and delayed compensation cur-
rent develops extra thrust force in the translator and produces
the small overshoot.

Referring to the impulse disturbance response shown in
Fig. 14(a), the settling time is 0.12 s, and it is a long time from
the industrial application view. This slow response is due to the
fact that the disturbance compensator requires a long time to
accumulate the I ′cmp to overcome the static friction and cogging
force.

To conclude, the original disturbance compensation system
and standard IMRC system can also achieve the submicrometer
precision linear motion system. The problem of this nonmodi-
fied approach is because the nonlinear static friction lengthens
the settling time and causes a slow operating speed. Note that
these results are shown for comparison with the performance of
the new proposed method.

D. Modified Disturbance Compensation

Inserting Ki can improve the transient response of the po-
sition output, such as reducing the rising time and improving
the response time to the disturbances in the PMLM. However,
Ki should not be too large in order to prevent amplifying the
effects of noise in Is and the serious oscillation appearing at
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TABLE II
PERFORMANCE OF CONTROLLED COMPENSATED PMLM WITH DIFFERENT Ki

the position output. Before the profile of Ki is determined,
some experiments had been conducted in order to investigate
the effect of Ki. The compensated PMLM controlled by IMRC
is commanded to travel with different position step command.
The rising time, steady-state error deviation, and the overshoot
level were studied. The results are summarized and shown in
Table II.

The value of Ki can cause the performances of the com-
pensated PMLM to change. When Ki is increased, the rising
time of the step response is reduced. This is exactly predicted
as shown in Section III-B. The additional terms [1 − F (s)] ×
[IsKf (Ki − 1)] in (7) can improve the response time by using
Ki larger than one. At the same time, when Ki is larger than
two, the steady-state error deviation is larger. It is because
the filter 1 − KiF (s) acts as an amplifier when Ki is equal
to and larger than two (as shown in Fig. 4). This amplifier
enlarges the external disturbance, variations in parameters, and
the kinetic friction and increases the error deviation. One of the
improvements of Ki, which is not expected, is the reduction in
overshoot, although the effect of improvement is very small.
This could be because [1 − F (s)] × [IsKf (Ki − 1)] in (7)
amplifies the high-frequency component in Icmd and the system
can react to the position error quicker than the conventional
disturbance compensator.

The PMLM will oscillate when Ki is large. When Ki is
larger than two, the position error (equal to the amplitude of
input step) is large. It must be prevented by defining the profile
of Ki deliberately.

The improvement in rising time is not significant when the
step size (position error) is larger than 20 µm. Ki is chosen to
be two when the position error is smaller than 20 µm. Although
there is no experimental study on the relationship between Ki

and the velocity, a large Ki is expected to be utilized when
the static friction is present. Ki should be two only when the
velocity is small (i.e., Ki = 2 when the speed is 1 mm · s−1,
within one resolution of velocity measurement).

The profile of Ki is shown in Fig. 15. The shape of Ki

is determined by experiments, and this arrangement is treated
as optimum setting, which does not amplify the noise in Is

and which improves the response time of the PMLM effec-

Fig. 15. Lookup table for Ki.

tively. The Ki varying mechanism was implemented to the
compensated PMLM with IMRC algorithm. The step response
experiments (with square wave input with minimum step size
and critical condition step size) were conducted in order to
illustrate the success of the proposed algorithm. The results are
shown in Figs. 12(b) and 13(b).

Based on the experimental results, the performance of the
controlled PMLM with varying Ki mechanism is better than
that of the original control algorithm. Considering the two
position–time graphs in Figs. 12 and 13, the response time of
the positioning system with Ki varying mechanism is smaller
than that of the original control algorithm. In Fig. 12, the
response time reduces from 0.116 to 0.082 s. In Fig. 13,
the response time reduces from 0.067 to 0.056 s. Another
valuable observation is related to the recovery time after the
overshoot. Referring to the error–time graphs in Fig. 13, after
the occurrence of overshoot, the controlled PMLM with varying
Ki mechanism can bring the translator back to set point faster
than using the controlled PMLM with original algorithm. The
varying Ki mechanism not only reduces the rising time of the
position of PMLM but also can maintain the precision and
accuracy of the position output (steady-state error is ±50 nm).

To investigate the response time toward the disturbance, an
impulse disturbance was applied to the controlled compensated
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PMLM with Ki varying mechanism. The disturbance response
is plotted as shown in Fig. 14(b). The experimental results illus-
trate that the disturbance recovery time is improved from 0.12
to 0.07 s. As mentioned before, the long settling time shown in
Fig. 14(a) is caused by static friction. This experimental result
also proves that the effect of static friction can be reduced by
using varying Ki mechanism.

The largest step response of the experiments is 800 µm, but
it is not the traveling range limitation of the proposed system.
If the profile of the position command is designed properly,
the traveling range of the proposed mechanism can be longer.
For example, the derivative and double derivative of position
command can be controlled (the velocity command and the
acceleration command) so that the corresponding input current
Is can be limited within 3 A and the velocity of PMLM can be
limited within the maximum measurable speed of the optical
linear incremental encoder (0.35 m · s−1).

VI. CONCLUSION

A general-purpose PMLM is being controlled for developing
a submicrometer precision linear motion system. The control
strategy includes a modified disturbance observer and compen-
sator, and the IMRC algorithm. The external disturbance, the
effect of parameter uncertainties, and the frictional force can be
eliminated effectively, and the position of the motor could be
tracked precisely.

The two main contributions of this paper are “establishing the
method to optimize gf in the LPF of the disturbance observer”
and “introducing the additional gain Ki to modify the perfor-
mance of the conventional disturbance observer.” The design
additional gain Ki is the major contribution of this paper, and
the effect of the static friction is reduced by the presence of Ki.
Referring to the experimental results, the PMLM can be driven
with the minimum step equal to 0.2 µm, with error deviation
equal to 0.1 µm and with shorter response time.
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