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Abstract: A control algorithm for the position tracking of a magnetic levitation system is pre-
sented in this article. The magnetic levitation system is well known for its non-linear dynamic
characteristics and open-loop instability. The external disturbances will deteriorate the dynamic
performance of the magnetic levitation system, and may give rise to system instability. This prob-
lem triggers enormous interests in designing various controllers for the non-linear dynamic sys-
tem. In this article, a magnetic levitation system is first modelled. Then, a sliding mode controller
is proposed, with a simple yet effective disturbance observer to perform disturbance rejection.
Both the simulation results and the experimental results verify the validity of the robust controller.

Keywords: magnetic levitation system, non-linear dynamic characteristics, sliding mode con-
trol, disturbance observer, real-time implementation

1 INTRODUCTION

In recent years, magnetic levitation issues have
attracted many scientists and engineers’ attention
owing to its friction-free dynamic motions. A mag-
netic levitated metallic ball system has been a subject
of considerable interest to illustrate many fundamen-
tal principles of electrical and electronic engineering,
such as electromagnetics, circuit design, and control
algorithms. The magnetic levitation system is non-
linear in nature and is unstable in open loop. The
system performance would be heavily affected by vari-
ous disturbances. These challenging characteristics
stimulate the design of various controllers in order to
improve the system performances.

A magnetic suspension system was designed in ref-
erence [1], and the proportional plus derivative (PD)
control was adopted to levitate the metallic ball, but
the detailed system performances of the magnetic
suspension system were not analytically examined.
Feedback linearization control of the magnetic levita-
tion system has been applied by numerous researchers
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because of the inherent non-linearities of the system
[2, 3]. The findings in reference [2] revealed that the
feedback linearization method were superior to the
classical proportional-integral-derivative (PID) con-
trol in a large air gap of the magnetic levitation system;
however, the disturbance of the system was not taken
into account. While the disturbance was considered in
reference [3], the experimental results indicated that
there were static errors due to the magnetic levitation
mass perturbation. In reference [4], an adaptive non-
linear control composed of the feedback linearization
method was introduced, and the experimental results
reflected its robustness to system parameters uncer-
tainties. However, adaptive control is computationally
intensive and time consuming; also, the disturbance
was not taken into consideration.

Sliding mode control (SMC) is applied widely in
electro-mechanical systems [5–7]. It is efficient in
controlling complicated high-order dynamic plants
operating under uncertainty conditions [8]. The SMC
focuses on two domains: the selection of the slid-
ing surface and the design of the sliding control law.
The sliding surface will decide the desirable behaviour
of the operating system. The sliding control law will
force the system state trajectories towards the sliding
surface and stay on it.

Owing to the above merits, the SMC is one of
the effective candidates for the magnetic levitation
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system. The purposes of references [9] and [10] were
to replace the linear sliding surface with the non-
linear one; as a result, the desired performances of
the magnetic levitation systems were improved. In
reference [11], the sliding mode equivalence control
with the exponential reaching law was adopted to a
magnetic levitation system. Although the simulation
results show that the response air gap could follow
the command under the assumption of disturbances,
there was no real-time implementation to prove the
results.

For improving the system performance, some
hybrid controllers including the SMC are applied on
the magnetic levitation systems. For instance, the
integral sliding mode controller with grey forecast
was proposed in reference [12]; a combination of the
SMC and radial basis function network was employed
to design the controller in reference [13]. Although
experimental results suggest the effectiveness of these
methods, the algorithms are complicated and time
consuming.

In this article, a simple yet effective disturbance
observer (DO) is designed for the SMC of the magnetic
levitation system. First, the model of the magnetic
levitation system is built. Then, a sliding mode con-
troller is designed based on the assumption of a known
disturbance range. After investigating the closed-loop
system performances, the discrepancy between the
system dynamic characteristic and the static charac-
teristic is revealed, that is, the higher the parameter
gain to guarantee the zero steady error, the more the
possibility that the system has poor dynamic per-
formance, and vice versa. Hence, a simple DO is
integrated into the controller in order to eliminate
the effect of the disturbance. The simulation results
show the availability of the controller. The last area of
concern is that of validating the algorithms by real-
time implementation, and the experimental results
matched the simulation ones very well.

The organization of this article is as follows. The
modelling of the magnetic levitation system is dis-
cussed in section 2. In section 3, the sliding mode
controller and the DO are proposed and analysed
for the magnetic levitation system. In section 4, the
results of these controllers are simulated through Mat-
lab and Simulink. The real-time implementations of
the magnetic system are carried out to verify the pro-
posed algorithms in section 5. Finally, the concluding
remarks are given in section 6.

2 MODEL OF THE MAGNETIC LEVITATION
SYSTEM

Figure 1 shows the experimental set-up of the mag-
netic levitation system, and the schematic diagram
is given in Fig. 2. The experimental set-up is only an
example for the magnetic levitation system, and the

Fig. 1 Experimental set-up of the magnetic levitation
system
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Fig. 2 Schematic diagram of the magnetic levitation
system

control method discussed later can be applied to any
other typical magnetic levitation system. The mag-
netic levitation system is manufactured by Googol
Technology Limited. The magnetic levitation system
consists of an electromagnet, a steel ball, a light
source, a position sensor, a data acquisition analog
to digital/digital to analog (AD/DA) board, a control
computer, and a drive circuit. The steel ball can be
suspended at the desired set point by the electromag-
netic force, which can be adjusted by the input cur-
rent. The feedback apparatus includes light emitting
diode (LED) light source and optoelectronic sensor.
There is a slot in the light receiver panel to detect
the light intensity, and it can be generated to relate
voltage signals with the range from −10 to 0V. The
output photo-voltage signals from the optoelectronic
sensor are transferred to the controller through the
circuit’s signal process and AD board data collection.
By analysing those data, the controller regulates the
input current to implement on the electromagnet to
match the levitation requirements. The above is the
basic operational principle of this magnetic levitation
system, and the system model is considered as follows.
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2.1 Mathematic equations of model

The model of the magnetic levitation system can be
divided into three parts: mechanical kinetics model,
electromagnetic force model, and electrical model.

2.1.1 Mechanical kinetics model

The differential equation can be written as

m
d2z(t)

dt 2
= F (i, z) + mg (1)

where m is the quality of the steel ball, z is the air gap
distance between the electromagnet and steel ball, F
is the electromagnetic force, i is the current, and g is
the gravitational acceleration.

2.1.2 Electromagnetic force model

The electromagnetic co-energy W can be conducted
from the virtual work

W (i, z) = 1
2

L(i, z)i2 (2)

where L denotes the inductance of the electromag-
net coil and i denotes the current through the
electromagnet.

The inductance L can be regarded as a function of z
for this magnetic levitated ball system [14]

L = L1 + L0

1 + z/p
(3)

where L1 = L(∞), L0 = L(0) − L(∞), and p is the posi-
tive constant coefficient. L(∞) is the inductance when
the ball is removed, whereas L(0) is the inductance
when the ball is in contact with the coil. The coeffi-
cients can be obtained from the experiment, which
involves determining the minimum current required
to levitate the steel ball at various positions [15, 16].

Hence, the electromagnetic force can be written as

F (i, z) = ∂W (i, z)

∂z
= 1

2
∂L
∂z

i2 = − L0i2

2p(1 + z/p)2
(4)

Equation (4) shows the non-linearity of the magnetic
levitation system since the electromagnetic force is
the non-linear function of the air gap distance and
current.

2.1.3 Electrical model

The differential equation can be represented as follows

u(t) = Rci(t) + dλ(i, z)

dt
(5)

where u denotes the terminal voltage on the elec-
tromagnet, Rc denotes the resistance of the coil, and
λ = L(z) · i(t) denotes the flux linkage.

In this article, only the mechanical kinetics model
and the electromagnetic force model are considered
in the magnetic levitation system. Although the pro-
posed model is slightly different from the real one,
for overlooking the effect of inductance, the proposed
model is simplified and it is easy for controller design.

2.2 Linearized model of the magnetic
levitation system

Equation (4) can be rewritten by the Taylor series
expansion at the nominal operating point when the
error between the variation and nominal point is very
small

F (i, z) = F (i0, z0) + Ki(i − i0) + Kz(z − z0) (6)

Ki = ∂F (i, z)

∂i

∣∣∣∣ i = i0, z = z0

Kz = ∂F (i, z)

∂z

∣∣∣∣ i = i0, z = z0

where z0 is the desired air gap distance and i0 is the cor-
responding current with the stability of the magnetic
levitation system.

When the magnetic levitation system is stable, the
electromagnetic force equals to the gravity of the steel
ball

F (i0, z0) + mg = 0 (7)

Then, the following equation can be conducted from
equations (1), (4), (6), and (7)

d2z
dt 2

= −2g
i0

i + 2g
z0 + p

z + 2gp
z0 + p

(8)

2.3 Model of the controlled system

In this controlled system, the terminal voltage on
the electromagnet is defined as the input variation of
the system, and the photo-voltage from the position
sensor is defined as the output variation of the system.

The current passes through the power amplifier
to produce the input voltage. The power amplifier
is approximately a proportional amplifier since the
response of the circuit is very quick. Hence, the math-
ematic function of the input voltage and current can
be written as

uin = Kini (9)

where Kin is a constant value decided by the circuit.
The output voltage of the position sensor can be

experimentally measured at a different air gap dis-
tance. The collated data are least squares fitted to
determine the function between the output voltage
and the air gap distance. Figure 3 shows the static
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Fig. 3 Fitted static state characteristic curve of the out-
put voltage

state characteristic curve of the output voltage, and
the mathematical function of the output voltage and
the air gap distance can be represented as

uout = Kout(z + zout) (10)

where Kout and zout are constant values determined by
the least squares fit.

Combining equations (8) to (10) offers

d2uout

dt 2
+ auout + l = buin (11)

a = − 2g
z0 + p

b = −2gKout

i0Kin

l = 2gKout

z0 + p
(zout − p)

The controlled system is a second-order time-
invariant system from the above equation, and it is an
unstable system in open loop. Furthermore, the sim-
plified and linearized model of the controlled system
is different from the actual system in some degree. To
guarantee a satisfied closed-loop performance, there-
fore, a robust yet effective controller is necessary for
this system.

The specifications and system parameters of the
proposed magnetic levitation system are listed in
Table 1.

3 THE SLIDING MODE CONTROLLER

An SMC is proposed for this magnetic levitation sys-
tem. The state–space equations and the SMC method
are depicted as follows.

Table 1 Specifications and system
parameters

Mass of the steel ball 0.11 kg
Gravitational acceleration 9.81 m/s2

Reference air gap distance at
steady state

0.0235 m

Reference current at steady state 0.92 A
L0 0.575 H
P 0.003 15 m
Kin 5.893
Kout −448
A −736.2
B 1621.3
L 5095.8

3.1 State–space equations

Figure 4 shows the control structure of the magnetic
levitation system, where r is the reference input, y is
the output, e is the error between r and y, and e =
r − y, u is the control law, f is the outside disturbance,
and it satisfies

|bf (t)| � ε (12)

where ε is a constant parameter and ε > 0.
The differential equation of the system shown in

Fig. 4 can be conducted from (11)

d2

dt 2
y(t) + ay(t) + l = b[u(t) + f (t)] (13)

The system state–space equations are as follows by
adopting error e as the state variation; suppose x1 = e,
then

∑
:

⎧⎪⎪⎨
⎪⎪⎩

dx1(t)
dt

= x2(t)

dx2(t)
dt

= −ax1(t) − bu(t) + F (t)

(14)

where

F (t) = d2

dt 2
r(t) + ar(t) + l − bf (t) (15)

Controller
Plant

r e u 

f

y+

_

Fig. 4 Control structure of the magnetic levitation
system
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3.2 Sliding mode control

An SMC is adopted for the magnetic levitation system.
First, the sliding surface is chosen. Second, a sliding
control law is designed to force the system state traj-
ectories towards the sliding surface and stay on it in a
small vicinity bound.

3.2.1 Sliding surface

In a second-order time-invariant system, the sliding
surface is a switching line in the phase space. This
switching line can be represented by

S = cx1 + x2 (16)

where c > 0 is a constant parameter. Therefore, its
differential can be

Ṡ = cẋ1 + ẋ2 (17)

3.2.2 Sliding control law

Designing the sliding control law as (18)

u = 1
b

(
−ax1 + cx2 + d2

dt 2
r + ar + l + ε sat(S) + ηS

)
(18)

where η is a constant parameter, η > 0, and sat(S) is
the saturation function

sat(S) =

⎧⎪⎨
⎪⎩

1, S > �

S/�, |S| � �

−1, S < −�

(19)

where � denotes a small vicinity of the origin to define
the boundary layer, 0 < � < 1.

The saturation function can convert the discontin-
uous control into a continuous control. The system
state trajectories are bounded in a small vicinity of
the switching line S = 0, in place of the exactly ideal
mode. Since the switching action is replaced by a con-
tinuous approximation, the chattering problem can be
undermined.

3.2.3 Stability analysis

Employing the positive definite Lyapunov function
candidate

V = 1
2

S2 (20)

Combining (14), (15), and (18)

ẋ2 = −cx2 − ε sat(S) − ηS − bf (21)

Substituting (14) and (21) into (17)

Ṡ = −ε sat(S) − ηS − bf (22)

Hence,

V̇ = SṠ = −ε sat(S)S − ηS2 − bfS (23)

Since the system behaviour is not determined within
the small vicinity, the system will be stable if the phase
trajectory can converge into the small vicinity. For this
purpose, the saturation function can be replaced by
the sign function; therefore

V̇ = SṠ = −ε|S| − ηS2 − bfS

� −ε|S| − ηS2 + |bf ||S|
� −ηS2 − (ε − |bf |)|S| � 0

(24)

This verifies that the system is stable.

3.2.4 System characteristics analysis

It can be calculated from (22) that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S = p1 e−ηt − ε sign(S) + bf
η

, S < �, S > �

S = p2 e−((ε/�)+η)t − bf �

ε + η�
, |S| � �

(25)

where p1 and p2 are constant parameters.
Combining (21) and (25) gives{

ẋ2 = −cx2 − ηp1 e−ηt , S < �, S > �

ẋ2 = −cx2 −
( ε

�
+ η

)
p1 e−((ε/�)+η)t , |S| � �

(26)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x2 = p3 e−ct + ηp1

η − c
e−ηt , S < �, S > �

x2 = p4 e−ct + [(ε/�) + η]p2

(ε/�) + η − c
e−((ε/�)+η)t ,

|S| � �

(27)

where p3 and p4 are constant parameters.
From equations (16) and (26), the following are

obtained⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = − p1

η − c
e−ηt − p3

c
e−ct

−ε sign(s) + bf
η

, S < �, S > �

x1 = − p2

(ε/�) + η − c
e−((ε/�)+η)t − p4

c
e−ct

− bf
c[(ε/�) + η] , |S| � �

(28)

From the above equations, some conclusions can be
drawn:

The system dynamic characteristic is decided by η

and c before the phase trajectory converges within
the small vicinity; the system dynamic characteris-
tic mainly follows ε and � within the small vicinity
because ε/� is far larger than η and c.
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Following are the system steady characteristics in
the ideal condition

lim
t→∞ S = − bf �

ε + η�

lim
t→∞ x2 = 0

lim
t→∞ x1 = − bf �

c(ε + η�)

Although the system characteristics seem satisfying,
the system performance could be weakened by the
external disturbance, which does not allow intriguing
results to be obtained. In this case, the steady error will
not tend towards zero if the system does not allow high
gain. On the other hand, if the system gain ε/� is high,
the switching frequency will be high following the slid-
ing surface, which can cause the chattering problem,
as discussed earlier. According to (12), the value of ε

cannot be small discretionarily; hence, the dynamics
characteristics of the system will be debased. There-
fore, a novel control law is needed to improve the
system performance.

3.3 The improved sliding control law

An asymptotic observer is designed to estimate the
unknown disturbance. Then, the estimated distur-
bance is included in the novel control law in order
to undermine the impact of the disturbance. Figure 5
shows the new control structure of the magnetic
levitation system including the observer.

3.3.1 The DO

Construct an intermediate variable

h = f + Kox2 (29)

where Ko is a constant observer gain. On the basis
of the assumption that the disturbance f is a slow

Controller

Plant

r e u 

f

y+

_

Observer

f̂

Fig. 5 The new control structure of the magnetic levita-
tion system

variation system, it is reasonable to impose ḟ = 0; then

ḣ = Koẋ2 = Ko

(
−ax1 − bu + d2r

dt 2
+ ar + l − bf

)

= Ko

(
−ax1 − bu + d2r

dt 2
+ ar + l − bh + bKox2

)
(30)

Design an observer for the intermediate variable h as

˙̂
h = Ko

(
−ax1 − bu + d2r

dt 2
+ ar + l − bĥ + bKox2

)
(31)

where ĥ denotes the estimated h.
The mismatch between equations (30) and (31) is

given as

˙̃h = ˙̂
h − ḣ = −bKo(ĥ − h) = −bKoh̃ (32)

where h̃ denotes the error between the estimated h
and the real h. Equation (31) reveals that h̃ tends to
zero exponentially and the convergent rate varies with
the choice of observer gain Ko.

The disturbance f can be estimated as

f̂ = ĥ − Kox2 (33)

where f̂ denotes the estimated f .
Combination of (29) and (33) gives

f̃ = f̂ − f = ĥ − h = h̃ (34)

where f̃ denotes the error between the estimated f and
the real f .

As a result, f̂ will converge to f asymptotically, and
this estimation can be used to design the novel control
law.

3.3.2 The novel sliding control law

The updated control law is the following equation

u = 1
b

(
−ax1 + cx2 + d2

dt 2
r + ar + l

+ ε sat(S) + ηS − bf̂
)

(35)

The differential of f̂ can be obtained by combining
(31) with (33) and (35)

˙̂
f = ˙̂

h − K0ẋ2

= Ko

(
−ax1 − bu + d2r

dt 2
+ ar + l − bĥ + bKox2

)
− Koẋ2

= −Ko(cx2 + ẋ2 + εsat(S) + ηS)
(36)

The estimated f can be calculated from (36).
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Employing the positive definite Lyapunov function
candidate

V = V1 + V2, V1 = 1
2

f̃ 2, V2 = 1
2

S2

V̇1 = f̃ ˙̃f = f̃ (
˙̂
f − ḟ ) = f̃

˙̂
f

= f̃ (
˙̂
h − Koẋ2) = f̃ (−bKoh̃) = −bKo f̃ 2 � 0

V̇2 = SṠ = S(cx2 + ẋ2) = S(−εsat(S) − ηS − bf̃ )
(37)

Like the above analysis, the system behaviour is not
determined within the small vicinity, and the satura-
tion function can be replaced by the sign function;
therefore

V̇2 = −ε|S| − ηS2 − bf̃ S � −ηS2 − (ε − |bf̃ |)|S| � 0

(38)

under the assumption of |bf̃ | � ε.
Hence, V̇ � 0, and the system is stable.
Compared to the previous control law, the new one

can lower the ε apparently through replacing |bf |
by |bf̃ |. This modification can ameliorate the system
dynamic performance.

4 SIMULATION RESULTS

The proposed system is simulated by using Matlab
Simulink. A constant value disturbance and a sinu-
soidal variation value disturbance are both adopted in
the simulation, and the disturbance will not be trig-
gered until the simulation time comes to 1 s. Figure 6
depicts the comparison simulation results of voltage
response curves between an SMC without a DO and
an SMC with a DO; the SMC without a DO is based
on the condition that r = 5V, c = 20, ε = 2300, η = 15,
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Fig. 6 Voltage response curve (f = 1 kg)

� = 0.01, f = 1 kg, and the SMC with a DO is based
on condition that r = 5V, c = 20, ε = 0.5, η = 15, � =
0.01, Ko = 0.5, f = 1 kg. Figure 9 also represents com-
parison simulation results of voltage response curves
between the SMC without a DO and the SMC with a
DO; the only difference from Fig. 6 is that the dis-
turbance is f = sin(2πt) kg. Figures 7 and 10 depict
the comparison simulation results of the control law
between the SMC without a DO and the SMC with a DO
when the disturbance is f = 1 kg and f = sin(2πt) kg,
respectively. Figures 8 and 11 show the estimated dis-
turbances according to f = 1 kg and f = sin(2πt) kg
separately. The fixed sample time is T = 0.003 s.

As shown in Fig. 6, before the DO is adopted, there
is static error between the response and the reference
voltage when the constant value disturbance is added
into the system; after the DO is employed, there is
almost no static error. Besides, in the light of Fig. 7,
it can be seen that there is a bit high oscillation in the
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Fig. 7 Control law (f = 1 kg)
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Fig. 8 Estimated disturbance curve with the DO
(f = 1 kg)
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Fig. 11 Estimated disturbance curve with the DO
(f = sin(2πt) kg)

control law curve without the DO; the reason for this is
that the dynamic switching is too fast for the high gain
ε, while the control law curve is smooth with the DO.
The result of Fig. 8 shows that the estimated distur-
bance matches the reference disturbance after a short
interim. The findings of these figures show that the
system performances are sparklingly promoted when
the DO is used. The same conclusions can be drawn
from the results of Figs 9–11 when the disturbance is a
sinusoidal variation value. These results are identical
with the control algorithms of the above section.

5 EXPERIMENTAL RESULTS

Experiments are also carried out to verify the con-
trol algorithms. The control algorithms are developed
under the Matlab/Simulink environment. The real-
time implementation of the magnetic levitation sys-
tem is executed with the Real Time Workshop (RTW)
of Matlab. One data capture and processing card,
plugged into a peripheral component interconnect
(PCI) bus of the host AMD Athlon XP 1223 MHz com-
puter, is a 16 digital I/O channels and 12 bit A/D
converter card.

After the power of the magnetic levitation system is
switched on and the control software Matlab/Simulink
is running, the controlled steel ball is put into the elec-
tromagnetic field in about 2 s. When the steel ball is
levitated stably, another steel ball of 0.05 kg, used as
the disturbance, is added to the electromagnetic field
in around 17 s.

Figures 12(a) and 13(a) represent the experimental
results of the SMC without the DO on the condition
that uin = −5V, c = 60, ε = 100, η = 18, and � = 0.01.
Figures 12(b) and 13(b) represent experimental results
of the SMC with the DO when the corresponding
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Fig. 12 Voltage response curve (r = −5V): (a) SMC
without DO and (b) SMC with DO
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Fig. 13 Control law (r = −5V): (a) SMC without DO and
(b) SMC with DO

parameters are uin = −5V, c = 8, ε = 0.05, η = 5, Ko =
0.04, and � = 0.01. The fixed sample time for both is
T = 0.003 s.

Furthermore, the magnetic levitation system perfor-
mance of an SMC with a DO and that of the traditional
PID control are compared when the input voltage is
both a constant value and a sinusoidal variation value.

Figure 14(a) shows the experimental result of the
traditional PID control with uin = −5. The propor-
tional gain, the integral gain, and the derivative gain
are Kp = 1.4, Ki = 0.0018, and Kd = 12. The PID gains
are selected by trial and error so as to obtain a sat-
isfying system performance because it is difficult to
calculate the PID gains for the non-linearity of the
magnetic levitation system. Figure 14(b) represents
the experimental result of the SMC with the DO when
the corresponding parameters are uin = −5V, c = 8,
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Fig. 14 Voltage response curve (r = −5V): (a) PID and
(b) SMC with DO
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Fig. 15 Voltage response curve (r = −5 + 2 sin(πt)V):
(a) PID and (b) SMC with DO

ε = 0.05, η = 5, Ko = 0.04, and � = 0.01. Figure 15(a)
shows the experimental result of the traditional PID
control when the input voltage is a sinusoidal vari-
ation value uin = −5 + 2 sin(πt), and the PID gains
are the same as those in Fig. 14(a) (when uin = −5).
Figure 15(b) shows the experimental result of the
SMC with DO when the input voltage is also sinu-
soidal variation value uin = −5 + 2 sin(πt), and system
parameters are the same as those in Fig. 14(b) (when
uin = −5).

As shown in Fig. 12(a), before adopting the DO,
although it can reach a different steady state rapidly
when the disturbance steel ball is added to the sys-
tem, the output voltage deviates from the command.
After employing the DO, the response voltage can track
the command quickly when there is disturbance in
the system. There is no steady error regardless of dis-
turbance when the SMC with DO is used. Figure 13
shows that the control laws switch fast on the two con-
trol conditions, the possible reason being that the LED
light is sensitive to the environment; this uncertainty
will result in the continuous change of the output volt-
age, and the magnetic levitation system is a highly
non-linear system, the control law is correlative to the
output voltage.

Comparing Figs 14(a) and (b) when the command
voltage is a constant r = −5V, it can be shown that the
system can be stable without a steady error either of
the proposed sliding mode controller with DO or of
the PID controller, and the system dynamic character-
istic of the sliding mode controller with DO is a little
bit better than that of the PID controller. When the
command value is modified to a sinusoidal variation
range r = −5 + 2 sin(πt), the comparison results are
impressed from Figs 15(a) and (b). When using the PID
controller, although the response voltage tries to follow
the command, there is obvious delay in the trace, and
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the system performance is deteriorated when the dis-
turbance ball is put into the system. In contrast, when
applying the sliding mode controller with DO, the
response voltage curve can track the command very
well, and the system performance keeps well regard-
less of disturbance. It can be concluded that the system
performance of the SMC with DO is much better than
that of the PID controller, and the SMC with DO is very
robust against the disturbance.

The experimental results show that the magnetic
levitation system can be stable with either the slid-
ing mode controller without DO or with DO, and the
steady error because of the disturbance in the con-
troller without DO is eliminated in the controller with
DO, which validate the effectiveness of the proposed
SMC with DO. In addition, experimental results reveal
that performance of the SMC with DO is superior to
that of the traditional PID controller.

6 CONCLUSIONS

In this article, a magnetic levitation system based
on SMC is investigated. The model of the magnetic
levitation system is constructed, and a sliding mode
controller is proposed for this system. The stability
and system characteristics of the controller are both
analysed. Although the system in this sliding mode
controller is stable regardless of disturbance, static
error exists when there is disturbance. The static error
can be reduced by high system gains, but the dynamic
characteristic becomes worse.

An effective DO for SMC is designed so as to with-
draw the effects of disturbances. When the unknown
disturbance is added to the system, a simple but
effective observer is employed to estimate the dis-
turbance. In consequence, the system state trajectory
performances are significantly improved, and it is
robust against external disturbances. Both the sim-
ulation results and experimental results agree with
the control algorithms and prove the feasibility of the
proposed controllers. Furthermore, the SMC with DO
is compared with the traditional PID controller, and
the experimental results show that the SMC with DO
has overwhelming majority in this non-linear mag-
netic levitation system, especially when the command
signal varies within a wide range.
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