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Abstract: Trajectory control is an essential element in advanced manufacturing processes. For
demanding direct-drive applications, a linear switched reluctance motor (LSRM) has become
a potential candidate because of its low cost and simple structure. However, the inherent non-
linearities of the LSRM cause difficulties in its controller design. Recently, a few complicated
control approaches and schemes have been proposed to overcome the non-linear characteristics,
but they need precise modelling, and their algorithms are hard to realize. This article describes a
simple and effective design of the feedback control for the trajectory control of the LSRM driving
system, and some of its practical aspects. In the proposed control algorithm, the whole driving
system is decomposed into two subsystems with different time scales by using the two-time-
scale analysis. On the basis of this method, the position controller and current controllers are
designed for the two subsystems, respectively. In this way, the controller structure is simplified
and the whole tracking system can be designed tractable. Furthermore, a modified proportional-
differential controller is proposed for tracking the sinusoid wave. This article includes modelling
analysis, simulation results, and detailed experimental implementation as well.
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1 INTRODUCTION

The linear switched reluctance motors (LSRMs) have
drawn much research attention over the past decade,
due to its low cost, simple structure, ruggedness, reli-
ability in harsh environments and its potential for
numerous industrial applications. Compared with the
method of rotary motors having mechanical trans-
formation components for producing linear motion,
LSRM has many advantages, such as quick response,
high sensitivity, and precise tracking capability. More-
over, the structure of an LSRM can reduce the space
requirement for its installation. In addition, LSRM has
a simpler construction, more rugged structure and
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lower system cost than that of a direct-drive perma-
nent magnet linear synchronous motor. These advan-
tages make LSRM an alternative choice for direct-drive
applications. However, the main limitations for the
LSRM come from its inherent non-linear character-
istics and force-ripple output. The non-linear char-
acteristics are due to its non-linear force function
of position and current and the effect of magnetic
saturation. These problems create difficulties in the
controller design of the LSRM drive system.

Rotary switched reluctance motors (RSRMs) have a
longer history than LSRM and therefore most control
methods in literature are originally designed for the
RSRM. General foundations for the practical design
of a family of switched reluctance motors (SRMs)
are investigated in reference [1]; it demonstrates that
machines in this family can provide the basis for
fully-controllable variable speed systems. In reference
[2], a flux linkage-based controller is proposed for an
RSRM and experimental results show that low torque
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ripple can be achieved over a range of speed and
torques. In reference [3], a reduced-order model is pro-
posed for controller design and the non-linear torque
compensation is implemented using a lookup table.
Two feedback linearization controllers are designed
for position and speed tracking in references [4] and
[5], where a full order non-linear model is applied.
In references [6] and [7], two adaptive controllers
are proposed to combat the non-linear characteris-
tics of the motor by using the online estimation. In
the area of LSRM control, the speed control LSRM are
discussed in references [8] to [10]. Precision position-
related control is reported in references [11] and [12].
In reference [11], the authors adopt a lookup table to
linearize the relationships among phase force, current
and position and a plug-in compensator to improve
the system robustness. A closed-form solution is fur-
ther developed for short-distance position control in
reference [12]. These control schemes can achieve
high performance; but the complicated non-linear
control algorithms require a high-performance pro-
cessor and dedicated sensors for full implementation.
In addition, building a lookup table, especially a high-
precision lookup table, from vast experimental data
would require considerable time.

The objective of here is to propose a relatively
simple controller design, which can be conveniently

realized on a low-cost embedded system for trajectory
control applications. Hence, this article adopts an
approximated reduced-order model and a simple and
effective controller strategy for LSRM. These measures
are tailor-made for implementation in embedded sys-
tems at a very low cost. The whole driving system
is decomposed into an electrical sub-system and a
mechanical sub-system with different time scales. The
position controller and current controller are designed
individually for the two sub-systems in a cascaded
structure. In order to obtain smooth force output, a
winding excitation scheme consisting of a force distri-
bution function (FDF) and an approximated function
of inductance ratio, usually is used to connect the
two sub-systems. Besides, a modified proportional–
differential (PD) controller on the basis of the previous
work [11], which is insensitive to frequency variations
in low-frequency bandwidth, is proposed to improve
the sinusoid wave tracking ability of the system.

2 MODELLING AND CONTROLLER DESIGN OF
LSRM

2.1 Configuration and modelling of LSRM

In this article, the proposed LSRM is a three-phase
motor. The design schematic of the LSRM system

Fig. 1 Schematic of the LSRM
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Table 1 The electrical and mechanical parameters
of the LSRM

Pole width ( y1) 6 mm
Pole pitch ( y2) 12 mm
Motor length (x1) 146 mm
Phase separation (x2) 10 mm
Wind width 25 mm
Air gap width (z) 0.5 mm
Phase resistance 1.5 Ω

Aligned inductance 10.2 mH
Unaligned inductance 7.8 mH
Mass of the moving platform (M ) 1.8 kg
Friction constant (B) 0.08 N s m/s

is shown in Fig. 1. Its electrical and mechanical
parameters are listed in Table 1. A set of three-phase
coils with the same dimensions is installed on the
moving platform. The body of the moving platform is
manufactured with aluminium so that the total weight
of the moving platform is low and the magnetic paths
are decoupled. The moving platform is mounted on
two slider blocks that are tightly fixed to the bottom
of the LSRM. This rugged mechanical structure can
effectively buffer extend vibration during its operation.

The dynamic behaviour of the whole system can be
determined by Kirchhoff’s law of the voltage balance
of individual phase coil and by Newton’s law of the
motor’s mechanical motion. The equations of LSRM
can be expressed as voltage equation (1) and mechan-
ical equation (2). Since the flux linkage is a function
of current and position, the voltage equation can be
further expressed as in equation (3), in which the sec-
ond term on the right-hand side corresponds to the
voltage drop due to the position movement, and the
third term corresponds to the one due to the current
change. Thus

Vj = rjij + dλj

dt
, j = a, b, c (1)

fe = M
d2x
dt 2

+ B
dx
dt

(2)

and

Vj = rjij + ∂λj

∂x
dx
dt

+ ∂λj

∂ij

dij

dt
, j = a, b, c (3)

where Vj is the applied voltage to phase j, ij is the cor-
responding current, rj is the resistance and λj is its
flux linkage; fe is the electromechanical force produced
and x is the displacement of the moving platform. The
mass of the moving platform M and the system friction
constant B can be measured directly.

The connection between the two equations is the
force producing function by which the energy of the
system is transferred from an electromagnetic to a
mechanical form. The total electromechanical force
is the sum of the individual electromechanical forces
as given in equation (4). The force fj produced by

phase j is determined by differentiating the co-energy
function with respect to the position as in equation (5)
[13]. The force produced is a non-linear function of
the position and phase current. Further, it can be seen
that the force is a non-linear function, even though
the magnetic circuit operates in its linear region, in
which the phase-force produced can be rewritten as
equation (6). Here, Lj is named phase inductance being
the ratio of the phase flux linkage by its current. The
highly non-linear characteristics of the driving system
are therefore due to its non-linear flux behaviour and
the mechanism of force origination

fe =
c∑

j=a

fj (4)

fj = ∂

∂x

∫ ij

0
λj dij (5)

fj = 1
2

dLj

dx
i2

j (6)

The response times of the electromagnetic beha-
viour and mechanical motion are quite different.
Based on this fact the singular perturbation theory-
based two-time-scale analysis [3] is applied to the
model and to design the driving system. Assuming
that terminal voltage for each phase is regulated by
equation (7), the voltage equation (3) can be rewrit-
ten in the standard singular perturbation form as
equation (8).

Vj = Ki(ijd − ij), j = a, b, c (7)

ε
dij

dt
=

(
∂λj

∂ij

)−1 [
ijd − ij − ε

(
rjij − ∂λj

∂x
dx
dt

)]
,

j = a, b, c (8)

where Ki denotes the proportional coefficient for of
the current control, ijd denotes the desired current
and ε = K −1

i . The whole driving system can be seper-
ated into two sub-systems with different time-scales,
named fast and slow sub-systems. In the t-scale, the
slow sub-system can be expressed as equation (2)
corresponding to the mechanical motion. In this situ-
ation, the steady currents are taken into consideration
by setting ε = 0 in equation (8). The fast sub-system
describes the dynamical electromagnetic behaviours
of the coil by introducing a stretched time variable as
given in (9). In the τ -scale, the fast sub-system is rep-
resented as equation (10) by treating the variables of
slow subsystem as constants.

τ = t
ε

(9)

dij

dτ
=

(
∂λj

∂ij

)−1

(ijd − ij), j = a, b, c (10)
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To satisfy this two-time-scale analysis, an ade-
quately large Ki should be applied to ensure the
reasonable separation of time scale. This is justified
for our test set-up, since the current loop bandwidth
can be achieved up to kHz while the output mechan-
ical bandwidth is in the order of 10 Hz [11]. In this
framework, the fast sub-system is considered by the
treatment of the variables of slow sub-systems as
invariable. It is also reasonable to describe the slow
sub-systems as the variables of the fast sub-system
in their steady states. For a trajectory control sys-
tem the slow subsystem is a second-order differential
equation (2) from the input of total force to the out-
put of the position. The fast sub-system is a first-order
differential equation (3) for current control.

Through this analysis the complicated driving sys-
tem can be divided into two tractable reduced-order
sub-systems and it is possible to design controllers
of each sub-system, respectively. This is the essential
first step in designing the simple yet effective control
algorithms for LSRM.

2.2 Commutation strategy

Commutation is one of the essential tasks for the con-
troller. The desired force performance of an LSRM
is always carried out by the synchronous commuta-
tion with its current position. However, commutation
is associated with the problem of force ripples. To
obtain smooth output force a force sharing strat-
egy [8, 11], which is similar to the torque sharing

Fig. 2 The diagram of a motor winding excitation
scheme

approach for SRMs [4, 6], can be applied to weaken
the force ripples of single-phase excitation. For any
given position, there are two sets corresponding to
the phases positive-force produced and negative-force
produced as follows

�+ =
{

j :
∂Lj(x)

∂x
� 0

}
and �− =

{
j :

∂Lj(x)

∂x
< 0

}

Fig. 3 (a) Experimental data of current versus posi-
tion versus force output three-dimensional chart
for single phase and (b) experimental force
command versus position versus force output
three-dimensional chart for force sharing strategy

Table 2 The FDF scheme

Position range Positive force command Negative force command

0–2 mm fbd = fd fcd = 0.5(2 − x)fd , fad = 0.5xfd
2–4 mm fbd = 0.5(4 − x)fd , fcd = 0.5(x − 2)fd fad = fd
4–6 mm fcd = fd fad = 0.5(6 − x)fd , fbd = 0.5(x − 4)fd
6–8 mm fcd = 0.5(8 − x)fd , fad = 0.5(x − 6)fd fbd = fd
8–10 mm fad = fd fbd = 0.5(10 − x)fd , fcd = 0.5(x − 8)fd
10–12 mm fad = 0.5(12 − x)fd , fbd = 0.5(x − 10)fd fcd = fd
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The force sharing strategy can be performed by
an FDF

FDF(x, fd) = fd[wa(x) wb(x) wc(x)] (11)

Fig. 4 The block diagram for the structure of the whole
control system

Fig. 5 The block diagram for the modified PD controller

Fig. 6 Simulation profile of square wave tracking under
a PD control (Kp = 8, Kd = 0.24)

where fd denotes the desired total force and wj denotes
the weighting of force for phase j. An FDF should in
addition satisfy the principles as follows

{
fd � 0, wj(x) > 0 ∀j ∈ �+ and wj(x) = 0 ∀j ∈ �−

fd < 0, wj(x) > 0 ∀j ∈ �− and wj(x) = 0 ∀j ∈ �+

(12)
c∑

j=a

wj(x) = 1 (13)

The selection of weighting depends on the vari-
ous force sharing strategies influencing their design
considerations. A phase inductance ratio-based FDF
is proposed for the phase current transition during its
commutation in reference [8]. A simpler FDF scheme
is proposed using a linear switching in reference [11].
However, all force sharing strategies should satisfy the
condition that the sum of each weighting should be 1,
which means that the sum of each phase force agrees
with the desired total force.

Fig. 7 Simulation profile of square wave tracking under
a PD control (Kp = 8, Kd = 0.24)
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According to the force produced function in
equation (6), the desired phase currents can be cal-
culated by the output of the applied FDF and function
of the inductance ratio. The precise model for flux link-
age is hard to obtain due to its inherent complexity. To
calculate the desired phase currents, the non-linear
magnetic characteristics are usually approximated by
a ratio function of phase inductance to displacement.
A few methods have been proposed for approxi-
mating this ratio function, which can be classified
into two groups: through a lookup table [3, 11] and
through an approximation function [4, 14].The lookup
table needs only memory to store the characteris-
tic data from the actual measurements; however, it
lacks flexibility. The approximation function needs
more mathematical processing; but is more flexible
for practical use.

As the linkage between the electrical sub-system
and mechanical sub-system, an FDF and an

Fig. 8 Simulation profile of sinusoidal wave tracking
under a PD control with frequency of input signal
increasing (Kp = 8, Kd = 0.24)

approximation function of an inductance ratio are
together referred to as motor winding excitation
scheme. The diagram of a motor winding excitation
scheme is represented in Fig. 2. The FDF is used to
compute the desired phase force according to the posi-
tion and the desired total force. The approximation
function of the inductance ratio is used to compute
the desired phase current by using the desired phase
force and position.

The applied FDF in this article is chosen as in Table 2
as the Table 3 in reference [11] and the approxima-
tion function of the inductance ratio is described in a
sinusoidal function of position in reference [14]. The
corresponding experimental results of force produced
for a single phase and the force sharing strategy
performed on the proposed LSRM are given by Fig. 3.
The figure of single phase shows the highly non-
linear force characteristics of the LSRM. From the

Fig. 9 Simulation profile of sinusoidal wave tracking
under a modified PD control with frequency
of input signal increasing (Kp = 40, Kd = 0.24,
K = 1)
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experimental figure of force sharing strategy, it can
be clearly seen that the non-linearities are reduced
greatly even though there are still some ripples in the
force outputs.

2.3 Controller design

The driving system adopts a cascaded control struc-
ture, two controllers are designed for the electro-
magnetic subsystem and the mechanical subsystem
corresponded to current control and position control,
respectively. The applied FDF in the middle of the two
control subsystems. The block diagram of the whole
driving system is shown as Fig. 4. In the cascaded con-
trol system, the inner loop is for current control with
fast variables and the outer loop is for the position
control with slow variables.

For each phase coil, the relationship from terminal
voltage to phase current can be represented as
equation (14) by the rearrangement of equation (3). Rj

is treated as a generalized resistor. Hence, the dynamic

behaviour of the electromagnetic subsystem can be
approximated as a first-order differential equation. As
the inner loop, it can be easily regulated by a propor-
tional controller to guarantee both stability and quick
response

Lj
dij

dt
= Vj − Rjij , Rj = rj + dLj

dx
dx
dt

(14)

G(s) = Ks

(Ms + B)s
(15)

Note that if the inner loop is to impose perfect
current tracking, the mechanical subsystem can be
equivalently represented by a transfer function as a
second-order system equation (15), where Ks denotes
the system gain. In this article, the system gain is 1000.
Suppose there is no external load, a simple PD con-
troller as in equation (16) is sufficient for the position
tracking and its closed-loop transfer function is given

Fig. 10 Experimental set-up of the driving system
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by equation (17)

C(s) = Kp + Kds (16)

X (s)
Xd(s)

= Ks(Kp + Kds)
Ms2 + (KsKd + B)s + KsKp

(17)

where Kp and Kd are the proportional gain and dif-
ferential gain of the controller, respectively. Under the
PD control, the system stability and high performance
can be achieved by adjusting its controller parame-
ters. However, for certain special applications such
as continuous sinusoid tracking, the tracking error is
sensitive to the frequency of input

E(s)
Xd(s)

= Ms2 + Bs
Ms2 + (KsKd + B)s + KsKp

(18)

E(s)
Xd(s)

≈ Ms2 + Bs
KsKp

(19)

The error-input transfer function of this system
is described in equation (14). To meet the dynamic
response requirements, the proportional gain Kp is
often set at a high value while the differential gain Kd

is small. In the low-frequency band, equation (18) can
be approximated as equation (19) because of KsKp �
Ms2 + (KsKd + B)s. It can be seen that the error-input
transfer function acts a high-pass filter.

The error-input transfer function can also be
designed as a low-pass filter when the position con-
troller is modified as in Fig. 5, where K is the gain
of inner loop. In this case, the system is described as
equation (20) and the error-input transfer function is
given by equation (21). If K are chosen properly that
KsK � Ms2 + Bs, the error-input transfer function can
be approximated as equation (22) in the low-frequency
band. It acts as a low pass filter and the bandwidth
increases with

X (s)
Xd(s)

= Ks(Kp + Kds)
Ms2 + (KsKd + B)s + Ks(K + Kp)

(20)

E(s)
Xd(s)

= Ms2 + Bs + KsK
Ms2 + (KsKd + B)s + Ks(K + Kp)

(21)

E(s)
Xd(s)

≈ KsK
Ms2 + (KsKd + B)s + Ks(K + Kp)

(22)

3 SIMULATION RESULTS

The simulations are achieved with the MATLAB soft-
ware package and illustrated in this section. The
simulation results first demonstrate the track perfor-
mances of a PD controller for a square wave and a sinu-
soidal wave. Next the response profiles for sinusoidal
wave of the PD controller are compared with those of
a modified PD controller at different frequencies.

The position responses of a square wave and a sinu-
soidal wave for PD controller are shown in Figs 6 and 7,

respectively. In these figures, the maximum distance is
20 mm and the frequency is 1 Hz. It can be seen that the
LSRM driving system has good dynamic performance
with zero steady-state error.

The position response of the sinusoidal wave is
shown in Fig. 8 for the PD controller with its frequency
increase from 1.0 to 3.0 Hz. Note that in this case, the
peak-to-peak error increases rapidly from about 0.2
to 0.6 mm as frequency increases. The correspond-
ing experimental result for the modified PD controller
is shown in Fig. 9. Compared with the former, it is
clear that the peak-to-peak error decreases slowly as
frequency increases. The simulation results demon-
strate that the modified algorithm is insensitive to the
variation of the frequency.

4 EXPERIMENTAL IMPLEMENTATIONS

The diagrammatic sketch and the actual experimental
set-up of the driving system are shown in Fig. 10.

Fig. 11 Experimental response of square wave tracking
under a PD control (Kp = 8, Kd = 0.24)
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The host PC is a Pentium 4 computer that is used to
download the target code into a dSPACE DS1104 DSP
motion controller card, and supports an interface to
adjust the system parameters in real-time. The control
algorithm is developed using MATLAB/SIMULINK. All
control functions are implemented and state variables
are sampled by the DS1104 card, which is plugged into
a PCI bus of the host PC. Note that the experimen-
tal set-up is intended for the purpose of development.
In applications, the proposed control scheme can be
fully implemented by a low-cost embedded system.
The driver consists of three asymmetric bridge IGBT
inverters with a DC voltage supplier corresponding
to the three winding, respectively. A linear optical
encoder with 0.5 μm resolution is mounted on the
mover of the LSRM system and provides position
feedback information.

In the whole driving system, the current tracking
requires high-speed response but has relatively sim-
ple control, while the position control and the FDF

Fig. 12 Experimental response of sinusoidal wave track-
ing under a PD control (Kp = 8, Kd = 0.24)

are relatively slow but complicated. Therefore, the
current control is performed by an analogue amplifier
hardware in order to meet its speed requirements.
The micro-computer system is used to realize to
the position controller and FDF. The merits of this
arrangement are (a) flexibility of implementation and
application, and (b) optimized performance of the
micro-processor system. In this experimental system,
current control is implemented by a commercial driver
with 20 kHz switching frequency. The selection of sam-
pling frequency for the position control is dependent
upon the required system performances and hardware
limitations. Generally speaking, a sampling frequency
ranging from 1 to 2 kHz can achieve a good position
tracking. In this system, the sampling frequency is
chosen as 1 kHz.

The position responses of square wave and sinu-
soidal wave for PD controller are shown in Figs 11

Fig. 13 Experimental response of sinusoidal wave track-
ing under a PD control with frequency of input
signal increasing (Kp = 8, Kd = 0.24)
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and 12, respectively. In these figures, the maximum
distance is 20 mm and the frequency is 1 Hz. It
can be seen that the LSRM driving system has
good dynamic performance with zero steady-state
error.

The position response of the sinusoidal wave is
shown in Fig. 13 for the PD controller with its fre-
quency increase from 1.0 to 3.0 Hz. Note that in this
case, the peak-to-peak error increases rapidly from
about 0.4 to 1.2 mm as frequency increases. The cor-
responding experimental result for the modified PD
controller is shown in Fig. 14. Compared with the for-
mer, it is clear that the peak-to-peak error decreases
slowly as frequency increases. As with the simulations,
the experimental results also demonstrate that the
modified algorithm is robust to the variation of the
frequency.

Fig. 14 Experimental response of sinusoidal wave track-
ing under a modified PD control with frequency
of input signal increasing (Kp = 40, Kd = 0.24,
K = 1)

5 CONCLUSION

In this article, a simple yet effective design of feed-
back control is represented for trajectory control of
the LSRM driving system. Based on the two-time-
scale analysis, the driving system is decomposed into
two reduced-order subsystems with two different time
scales. According to that the position controller and
the current controller are designed for the two subsys-
tems, respectively. The entire control system adopts
a cascaded structure and the inner loop and outer
loop are connected by the FDF. This control scheme
simplifies the controller design and makes the track-
ing system implementation tractable. Furthermore, a
modified PD controller is proposed to enhance the sys-
tem performance for the tracking of sinusoid waves.
Simulations and experimental results verify that the
model and control algorithm of the LSRM is efficient
and effective.

ACKNOWLEDGEMENTS

The work described in this paper was fully sup-
ported by a grant from the Research Grants Council of
the Hong Kong Special Administrative Region, China
(PolyU 5224/04E). The authors would also like to thank
the general support of South China University of Tech-
nology through National Natural Science Foundation
of China (60674099).

REFERENCES

1 Lawrenson, P. J., Stephenson, J. M., Blenkinsop, P. T.,
Corda, J., and Fulton, N. N. Variable-speed switched
reluctance motors. IEE Proc. Electr. Power Appl., 1980,
127(4), 253–265.

2 Barrass, P. G. and Mecrow, B. C. Flux and torque control
of switched reluctance machines. IEE Proc. Electr. Power
Appl., 1998, 145(6), 519–527.

3 Taylor, D. G. An experimental study on composite control
of switched reluctance motors. IEEE Control Syst. Mag.,
1991, 11(2), 31–36.

4 Ilic’-Spong, M., Marino, R., Peresada, S. M., and Taylor,
D. G. Feedback linearizing control of switched reluc-
tance motors. IEEE Trans. Autom. Control, 1987, AC-32,
371–379.

5 Panda, S. K. and Dash, P. K. Application of non-linear
control to switched reluctance motors: a feedback lin-
earization approach. IEE Proc. Electr. Power Appl., 1996,
143(5), 371–379.

6 Bortoff, S. A., Kohan, R. R., and Milman, R. Adaptive
control of variable reluctance motors: a spline func-
tion approach. IEEE Trans. Ind. Electron., 1998, 45(3),
433–444.

7 Milman, R. and Bortoff, S. A. Observer-based adap-
tive control of a variable reluctance motor: experimental
results. IEEE Trans. Control Syst. Technol., 1999, 7(5),
613–621.

Proc. IMechE Vol. 222 Part C: J. Mechanical Engineering Science JMES904 © IMechE 2008



Effective modelling and control strategy for LSRM 2121

8 Bae, H. K., Lee, B. S., Vijayraghavan, P., and
Krishnan, R. A linear switched reluctance motor: con-
verter and control. IEEE Trans. Ind. Appl., 2000, 36(5),
1351–1359.

9 Dorningos, J. L., Andrade, D. A., Freitas, M. A. A., and De
Paula, H. A new drive strategy for a linear switched reluc-
tance motor. In the Electric Machines and Drives Confer-
ence, Madison, Wisconsin, USA, 2003 (IEMDC’03), June
2003, vol. 3, pp. 1714–1719.

10 Pan, J. F., Kwok, S. C., Cheung, N. C., and Yang, J. M. Auto
disturbance rejection speed control of linear switched
reluctance motor. In the Industry Applications Confer-
ence, (IAS’05), Hong Kong, China, October 2005, vol. 4,
pp. 2491–2497.

11 Gan, W. C., Cheung, N. C., and Qiu, L. Position control
of linear switched reluctance motors for high-precision
applications. IEEE Trans. Ind. Appl., 2003, 39(5),
1350–1362.

12 Gan, W. C., Cheung, N. C., and Qiu, L. Short distance
position control for linear switched reluctance motors:
a plug-in robust compensator approach. In the IEEE
Industry Applications Conference, Chicago, Illinois, USA,
September/October 2001, vol. 4, pp. 2329–2336.

13 Majmudar, H. Electromechanical energy converters, 1965
(Allyn and Bacon, Inc., Boston).

14 Khorrami, F., Krishnamurthy, P., and Melkote, H.
Modeling and adaptive non-linear control of electric
motors, 2003 (Springer, Germany).

JMES904 © IMechE 2008 Proc. IMechE Vol. 222 Part C: J. Mechanical Engineering Science




