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Abstract—In the high-technology mass manufacturing industry,
high-speed and high-precision motion is an indispensable element
in the automated production machines. In recent years, there
has been a growing tendency to employ direct drive permanent
magnet linear synchronous motors in demanding motion appli-
cations. Although the overall performance is good, its implemen-
tation cost remains high. This is mostly due to the cost of the
Neodymium–Boron magnets, the manufacturing of the magnetic
rails, and the precision of the overall mechanics. In this paper,
a much cheaper alternative is proposed-to use a low-cost linear
switched reluctance motor (LSRM) and an adaptive control strat-
egy to overcome the tolerances and difficult control characteristics
inherent in the motor. The LSRM has simple and robust structure,
and it does not contain any magnets. However, its force is solely
drawn from the reluctance change between the coil and the steel
plates. Variations on the behavior of these two elements due to
different operating conditions will change the motion behavior of
the motor. Also, to keep the overall cost low, the LSRM sets a
marginal mechanical tolerance during its mass production. This
leads to characteristic variations in the final product. Finally, since
the LSRM is a direct drive motor, any variations on the motor
characteristics will directly reflect on the control system and the
motion output. In this paper, a self-tuning regulator (STR) is
proposed to combat the difficulties and uncertain control behav-
iors of the LSRM. This paper first introduces the motor wind-
ing excitation scheme, the model of the LSRM, and the current
control method. The LSRM system is modeled as a single-input
single-output discrete model with its parameters estimated by the
recursive least square (RLS) algorithm. Then, an STR based on
the pole placement algorithm is applied to the LSRM for high-
performance position tracking. Both the simulation investigation
and the experimental verification were conducted. In both cases,
the results verified that the proposed RLS algorithm can estimate
the parameters with fast convergence. The STR can provide quick
response and high precision which is robust to the change of
system parameters. Combined with STR control, the LSRM is a
low-cost solution to fast, accurate, and reliable position tracking
for many demanding motion control applications.
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I. INTRODUCTION

THE linear switched reluctance motor (LSRM) has a simple
structure; it is rugged, reliable and low in cost. It is also

capable of operating in harsh environments and wide speed
range. Therefore, LSRM is an attractive candidate for position
or velocity control. LSRM has certain advantages when it is
used as a high-speed and high-precision linear motion sys-
tem. Compared with rotary motor coupled with rotary-to-linear
mechanical translator, LSRM has a quicker response, high-
sensitivity, and high-tracking capability. Compared to direct
drive permanent magnet linear synchronous motor, LSRM has
a simpler and rugged structure, and a lower system cost. On
the downside, LSRM is difficult to control and its output has a
higher force ripple. This is due to the complex and nonlinearity
of the LSRM magnetic circuit, which is difficult to model,
simulate, and control.

In recent years, LSRM for high-performance motion control
has attracted renewed interest, and there have been several re-
ports on the different aspects of the LSRM. The design schemes
and analysis for LSRM are presented in [2]–[6]. References [3]
and [4] discuss the design aspects of the LSRM for precision
position control applications. Speed control for LSRM is dis-
cussed in [7]–[9]. A current controller and a speed controller
are proposed in [7], and an autodisturbance rejection controller
is applied to the speed control for LSRM in [9]. The initial
problems of precision position control in LSRM are tackled in
[12]. The authors propose a simple position controller based
on a nonlinear compensation table to linearize the relationships
between force, current, and position in the LSRM. However,
this method is based on a direct lookup table; it does not
take into account of load variation and parameter change. This
method is improved in [10] by adding a plug-in compensator
to allow for small variations in the nonlinear compensation
table. So far, in the publications of high-precision position
control of LSRM, there has been no mention of an adaptive
controller which observes and regulates the whole model of
the LSRM, including its electrical, magnetic, and mechanical
behaviors.

The control of LSRMs requires proper synchronization with
current position. Moreover, the electromagnetic force with
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ripples is nonlinear with different positions and current lev-
els. The force ripples degrade tracking ability of the LSRMs
remarkably. Manufacturing imperfection, such as the variation
of the air gap, can result in characteristic differences during the
mass production. Moreover, the parameters of the LSRM sys-
tem often change with operating conditions and time. For ex-
ample, the motor winding resistance changes with temperature
and the frictional force of the linear motion guide changes with
time. These would eventually contribute to the motor model
uncertainties. For high-performance LSRM drives, online para-
meter identification is a useful method, since static models are
hard to represent the real machine adequately during dynamic
operating conditions. Moreover, self-tuning regulators (STRs)
can avoid adjusting controller parameters for different LSRMs
applications. There are few literatures applying STR to position
tracking of LSRMs. This paper intends to develop a STR
with online parameter identification which considers winding
current tracking and the LSRM together as a controlled plant.
Here, the controlled plant is regarded as a second-order system
since the control bandwidth of the current tracking is much
quicker than that of the position tracking loop in this system.
The STR adopts pole placement method to update the control
parameters. Also, the parameters of the total controlled plant
are estimated by the recursive least square (RLS) algorithm,
which can get more accurate estimation and robust to the
measurement noise.

The organization of this paper is as follows. Construction and
modeling of the LSRM are given in Section II and parameter
identification and STR design in Section III. Sections IV–VI
present the simulation results, experimental results, and con-
clusions, respectively.

II. CONSTRUCTION AND MODELING OF LSRM

A. Configuration of LSRM

The design schematic of the LSRM system is showed in
Fig. 1. A set of three-phase coils are installed on the moving
platform as shown in Fig. 1. The three coils are with same
dimension. The body of the moving platform is manufactured
with aluminum, so that the total weight of the moving platform
and its inertia are low and the magnetic paths are decoupled.
The moving platform is mounted on two slider blocks, which
are tightly fixed on the bottom of the LSRM. Also, between
the moving platform and the slider blocks, there are some
ball bearings. This rugged mechanical structure can effectively
buffer vibration in operation. The stator track and the core of
the windings are laminated with 0.5-mm silicon–steel plates.
A 0.5-µm-resolution linear optical encoder is integrated in the
LSRM system to observe the motion profile of the moving
platform and provide the feedback position information. The
electrical and mechanical parameters of the LSRM are listed
in Table I.

B. Modeling of LSRM

The LSRM system has a highly nonlinear characteristic due
to its nonlinear flux behavior. The fundamental equations of
LSRMs are the voltage balancing (1), the electromagnetic force

Fig. 1. Schematic of the LSRM.

production (2), and the mechanical movement (3). Here, νj is
the voltage applied to the terminals of phase j, ij is the current
of phase j, rj is the winding resistance, λj is the phase flux
linkage of phase j, x is the displacement, fe is the generated
electromagnetic force, fl is the external load force, and M and
B are the mass and friction constant, respectively,

νj = rjij +
dλj

dt
, j = a, b, c (1)

fe =
c∑

j=a

∂
∫ ij

0 λjdij

∂x
(2)

fe =M
d2x

dt2
+B

dx

dt
+ fl. (3)

In general, the mechanical time constant is much slower than
the electrical time constant of the current tracking loop. The
above claim is justified for our test setup since we can achieve
the current loop bandwidth up to kilohertz while the output
mechanical bandwidth is on the order of 10 Hz [10]. Therefore,
the two-time-scale analysis and design can be applied in the
LSRM system. The dynamics of the mechanical position is
slower than that of the electrical current. When the mechanical
variables are mainly discussed, the electromagnetic variables
can be regard as constants. As a result, the electromagnetic
force production equation can be approximated as

fj(x, ij) =
1
2
dLj

dx
i2j , j = a, b, c (4)

where fj is the generated electromagnetic force of phase j,
dLj/dx is the inductance change rate of phase j. One charac-
teristic of LSRMs is that it must be driven synchronously with
its position. Generally, the motor winding excitation scheme
for LSRMs can be considered as a force distribution function
(FDF) and an approximated function of inductance change rate
and the scheme of the driver can be shown in Fig. 2. The
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TABLE I
ELECTRICAL AND MECHANICAL PARAMETERS OF THE LSRM

Fig. 2. Scheme of the LSRM driver.

FDF is used to compute the force for each phase according to
the position and the direction. The approximated function of
inductance change rate is used to compute the phase current
according to the command force of phase and the position.
Some methods have been proposed for the approximated func-
tion of inductance change rate [7]–[11]. They can be classified
into two types: the type of lookup table and the type of approx-
imated function. If the FDF and the approximated function of
inductance change rate are chosen, the current can be calculated
by the inverse function f−1

j (x, ij) of (4) with command force
and its position. In this paper, the FDF is chosen as in Table II
[10] and the approximated function of inductance change rate
is described as [11]

dLj (xj(t))
dxj(t)

= −Kpj sin
(

2πxj(t)
y2

)
, j = a, b, c

xb =xa +
2y2
3

xc =xa +
y2
3
. (5)

Here, y2, xj , and Kpj are the pole pitch of the LSRM,
the displacement of phase j and a proportional parameter,
respectively.

According to the approximated function of inductance
change rate in (5) and the FDF in Table II, the output force
experiment is performed on the proposed LSRM. The experi-
mental data is shown in Fig. 3. From the figure, the output force
is found to increase with the command force and the change
rate of output force is almost kept as a constant value to the
same position. However, there are output force ripples at the
same force command when the position changes. The output
force is nonlinear to the position and force command. The pa-
rameters of the LSRM system change with its position and force
command when it runs. Static models are hard to represent the
real machine adequately during dynamic operating condition.
Online parameter identification is a useful method for real-
time parameter estimation, which can provide information to
describe the parameter changes. In this paper, the parameters of
the LSRM are online estimated by RLS algorithm. According
to the two-time-scale analysis, the LSRM can be considered
as a second-order system with the current tracking controller
[7] when the dynamics of the currents are ignored. If y(t) is
defined as the output of a plant, u(t) is defined as the input
of the plant, w(t) is defined as the load disturbance, and q is
defined as the forward shift operator, the second-order system
can be rewritten as the single-input single-output discrete model
given by

A(q)y(t) = B(q) [u(t) + w(t)] (6)

where

A(q) = q2 + a1q + a2 and B(q) = b0q + b1.

III. STR DESIGN FOR THE LSRM

The STR can automatically tune its parameters to obtain the
desired performances of the closed-loop system. Fig. 4 shows
the fundamental construction of the STR. In each control cycle
of the STR, there are three steps included. The first step is to
identify the parameters of the plant; in the second step, the
parameters of the controller are decided on the basis of the
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TABLE II
FDF SCHEME

Fig. 3. Force command versus position versus force output 3-D chart.

Fig. 4. Construction of the STR.

result of the identification and the desired performances; and
the control signal is calculated using the parameters of the
controller, input signal, and output signal.

A. Parameter Identification of LSRM

The design of a STR is based on the online parameter
identification, which can represent the dynamics of the ac-
tual plant in real time. As discussed before, the LSRM is
assumed as a second-order system as (6). It can be seen that
the load disturbances contaminate the input signals and they
can eventually result in the error of the estimation. Therefore,
some filtering and pretreatment are required before the input
and output signals are used for the parameter identification.
Usually, the load disturbances cannot be measured and is used
for the estimation directly. However, they can be considered as
a relatively slow variable and can be diminished by a filter as
follows [1], [13]:

u(t) =αu(t− 1) + u(t) − u(t− 1)

y(t) =αy(t− 1) + y(t) − y(t− 1), 0 ≤ α ≤ 0.5

Fig. 5. (a) Trajectory response and (b) control signal of the LSRM system.

where u(t) and y(t) are the filtered input and output,
respectively.

Therefore, the system model (6) can be rewritten as (7),
which can be parameterized as (8)

A(q)y(t) =B(q)u(t) (7)

y(t) =ϕT(t− 1)θ(t− 1) + ε(t) (8)

where θ = [a1, a2, b0, b1],ϕT(t− 1) = [−y(t− 1),−y(t− 2),
u(t− 1), u(t− 2)], and ε(t) is the residuals.
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Fig. 6. (a) Trajectory response and (b) control signal of the LSRM system
during its simulation with the 200% mass increase on the moving platform.

Parameters of (8) can be estimated by the RLS algorithm
[1] as

θ(t) = θ(t− 1) +K(t)
[
y(t) − ϕT(t)θ(t− 1)

]
(9)

K(t) =P (t− 1)ϕ(t)
[
λ+ ϕT(t)P (t− 1)ϕ(t)

]−1
(10)

P (t) =
1
λ

[I −K(t)ϕT(t)]P (t− 1) (11)

where P is the covariance matrix and λ is the forgetting factor.
K(t) can be interpreted as the adjusting gain. If K(t) = 0,
the estimated parameters θ converge to some constants. The
forgetting factor, λ, which can be given from 0 to 1, reflects
the parameter converging rate. If the forgetting factor is set at a
small value, the estimated parameters would converge quickly
with big ripples. On the other hand, when the forgetting factor
is given a big value, the estimated parameters would converge
slowly with small ripples. Here, forgetting factor is given by

Fig. 7. (a) Trajectory response and (b) control signal of the LSRM system
during its simulation with 50% system gain and 200% mass increase on the
moving platform.

0.999. The initial covariance matrix P (0) is selected as rI4,
which is a 4-D unit matrix I4 scaled by a positive scalar r, here
r is given as a value of 10. Also, for the RLS algorithm, persis-
tent excitation is required to make the estimated parameters to
converge to their real values.

B. STR Design for LSRM

In this paper, the STR is designed by the pole placement
algorithm. For a plant described as (6), a general linear regulator
can be described by

R(q)u(t) = T (q)uc(t) − S(q)y(t) (12)

where R(q), S(q), and T (q) are polynomials, uc(t) is the com-
mand input signal. To obtain a causal regulator in the discrete
time case, the following conditions must be imposed: degS ≤
degR and deg T ≤ degR. Also, the closed-loop equation can
be obtained as (13) by combining (6) with (12). From (13), the
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Fig. 8. (a) Trajectory response and (b) control signal of the LSRM system
during its simulation with 50% system gain, 200% mass increase, and an
external load disturbance on the moving platform.

system output is considered as the result acted by the command
input signal and the external load disturbances

y(t) =
B(q)T (q)

A(q)R(q) +B(q)S(q)
uc(t)

+
B(q)R(q)

A(q)R(q) +B(q)S(q)
w(t). (13)

If the desired response from the command signal uc(t) to
the output ym(t) is set as the dynamics (14), the (15) should
be satisfied for model following. R0(q), S0(q), and T 0(q) are
the solutions to the (15), A0(q) is the observer polynomial. The
causality conditions for (15) can be accordingly written as

Am(q)ym(t) =Bm(q)uc(t) (14)

B(q)T 0(q)
A(q)R0(q) +B(q)S0(q)

=
A0(q)Bm(q)
A0(q)Am(q)

(15)

degA0 + degAm ≥ 2 degA− 1

degAm − degBm ≥ degA− degB. (16)

Fig. 9. Experimental setup of the LSRM motion system: (a) the block diagram
and (b) the overall appearance.

In many cases, the loading disturbances are relatively slow
to the command input signals. Here, the disturbance w(t) is
assumed to satisfy the following equation:

(q − 1)w(t) = e(t) (17)

where e(t) is a white noise. The influence of the disturbance
to the system output is represented by the second polynomial
on the right-hand side of the (13). To cancel the influence of
the disturbance, a factor as q − 1 can be included in R(q). This
may be achieved by requiring that R(q) have the form

R(q) = (q − 1)R′(q)

where R′(q) is a polynomial. Therefore, if R(q), S(q), and
T (q) satisfy the following:

R(q) = (q − 1)R′(q) = X(q)R0(q) + Y (q)B(q)

S(q) =X(q)S0(q) − Y (q)A(q)

T (q) =X(q)T 0(q) (18)

the system output follows:

y(t) =
X(q)A0(q)Bm(q)
X(q)A0(q)Am(q)

uc(t) +
B(q)R′(q)

X(q)A0(q)Am(q)
e(t).

(19)
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Fig. 10. Estimating the parameters of the LSRM: (a) a1, (b) a2, (c) b0, and (d) b1.

From (19), it can be seen that the system output can track
the input command in a desired response and is insensitive to
the load disturbances. The closed-loop pole equation is changed
to X(q)A0(q)Am(q). For keeping the stability of the system,
A0(q) and X(q) should be chosen as stable polynomials. In
this paper, the plant is a second-order system described as (6),
and the regulator is designed by the pole placement algorithm
without zero cancellation. Choosing stable polynomials A0(q)
and X(q), the parameters of the regulator can be obtained by
solving the (15), (18), and (19), then the control law can be
calculated from (12).

IV. SIMULATION RESULTS

In this section, we illustrate the performance of the proposed
STR by simulations. The simulations are achieved with the
MATLAB software package. Also, the parameter values of
the LSRM system employed in the simulations are listed in
the Table I. In some industrial applications, the performance
of overshoot free is required. In the simulations, the poles of
the reference model are chosen as a1m = −1.912 and a2m =
0.9139, the observer polynomial is chosen as q + 0.5, X(q−1)
is chosen as q + 0.8 and the sampling time is set to 0.001 s.

This parameter selection can make the LSRM system overshoot
free. Fig. 5 shows the response waveforms and control signals
for the STR and a conventional proportional-derivative (PD)
control. The PD controller is set in the initial condition with
100% system gain. From the figure, both of the two controllers
have good performance. Figs. 6–8 demonstrate the response
waveforms for the two controllers in different parameters of the
LSRM. In Fig. 6, the mass of the moving platform is increased
to twice as in Fig. 5; in Fig. 7, the mass of the moving platform
is increased to twice as in Fig. 5 and the system gain is reduced
to the 50%; in Fig. 8, besides the mass and system gain changed
as in Fig. 7, there is an external load disturbance applied on the
LSRM model. It can be seen that the response waveforms for
the PD controller changed with the parameters of the LSRM
while the STR can keep its response waveform invariable and
overshoot free. Hence, the STR is very robust to the change of
the system parameters.

V. EXPERIMENTAL IMPLEMENTATION RESULTS

The experimental setup is shown in Fig. 9. The host PC is a
Pentium 4 computer that is used to download the target code
into a dSPACE DS1104 DSP motion controller card. The
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Fig. 11. (a) Position tracking waveforms and (b) the controller output wave-
forms with 100% system gain.

control algorithm is developed under the MATLAB/
SIMULINK environment. All control functions are
implemented by the DS1104 card, which is plugged into
a PCI bus of the host PC. For the current tracking amplifier,
the driver consists of three asymmetric bridge insulated-gate-
bipolar-transistor inverters with 90 VDC voltage supplier.
A linear optical encoder with 0.5-µm-resolution is mounted
on the mover of the LSRM system and provides position
feedback information. In the experiment, the control signal
is the sum of the weighted PD control signal and self-tuning
regulating signal. At the beginning, the LSRM is operated
by the PD controller. Then, the control signal is switched on
continuously a few seconds later. Finally, the LSRM is fully
operated by the STR. Because of lack of the prior knowledge
about the plant, a displacement impact for the LSRM would
be resulted if the self-tuning regulating is fully switched on at
the beginning of the operation. However, the weighted control
method can avoid the impact of motor at the beginning of the
operation.

In the experiment, the LSRM system is considered as a
second-order system (6) with a sampling time of 0.001 s.
Equation (7) is used as the parameter estimation model. Fig. 10

Fig. 12. (a) Position tracking waveforms and (b) the controller output wave-
forms with the 200% mass increase on the moving platform.

shows the parameters estimating of the LSRM system. The
figures show that the parameters converge to their stable values
very quickly. Parameters a1 and a2 can converge to their stable
values within 2 s, while parameters b0 and b1 can converge to
their stable values in about 8 s.

Fig. 11 shows the position tracking waveforms and its cor-
responding control signal waveforms in the control of the
proposed STR and a conventional PD controller with the 100%
system gain. Since the parameters of the PD controller cannot
change, they are set under the condition of 100% system
gain. It can be seen that both of two controllers can obtain
good dynamic performance and accurate position tracking.
Figs. 12–14 show the corresponding experimental results with
the different system parameters. In Fig. 12, the mass of the
moving platform is increased to twice of in Fig. 11; in Fig. 13,
the mass of the moving platform is increased to twice and the
system gain is reduced to the 50%; in Fig. 14, besides the
mass of the moving platform and system gain changed as in
Fig. 13, there is an external load disturbance acted on the
LSRM. The figures confirm that the response waveforms of
the STR remain the same under different parameter changes
and operating conditions, while the PD control has different
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Fig. 13. (a) Position tracking waveforms and (b) the controller output wave-
forms with 50% system gain and 200% mass increase on the moving platform.

dynamic responses. The experimental results are very similar
to the simulation results. The overshoot of the output wave-
form for the PD controller increase substantially when the
parameters of the LSRM system are changed. There is no
overshoot for the STR under all operating conditions. The
experiment data confirmed that the proposed STR is more
robust and has a higher performance than the conventional PD
controller.

VI. CONCLUSION

This paper proposes a STR based for the high-precision con-
trol of the LSRM. First, the motor winding excitation scheme
and the model of the LSRM with current control are introduced.
Then, the LSRM system is represented by a single-input single-
output discrete model. After this, parameter estimation method
and a STR based on the pole placement algorithm are developed
for the position tracking of the LSRM. Both the simulation
and experimental results demonstrate that the parameters can
converge quickly. Also, under the STR, the position tracking of
the LSRM has almost no influence when the system parameters
are changed. The position output remains overshoot free irre-

Fig. 14. (a) Trajectory response and (b) control signal of the LSRM system
with 50% system gain, 200% mass increase on the moving platform, and an
external load disturbance.

spective of the parameter changes. These results confirm that
the method is effective and robust in the position tracking of
the LSRM.
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