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Abstract– It is well known that commercial hybrid stepper 
system has one or more low speed resonant points.  However, 
this characteristic is not accurately modeled without high order 
equations or complicated measurement of motor parameters.  In 
this paper, a novel approach is proposed to model the behavior 
of a commercial 1.8∘ hybrid stepper motor accurately and 
efficiently.  Damping algorithms for open loop and servo control 
are proposed.  Both simulation and experiment results show that 
the proposed algorithms can effectively eliminate low speed 
resonance and vibration of the stepper system. 

I.       INTRODUCTION 
Stepper motor system has several significant advantages.  

No feedback is normally required for either position control 
or speed control.  Positional error is non accumulative.  
Besides, stepper motors are compatible with modern digital 
equipment.  For these reasons, various types and classes of 
stepping motor have been used in computer peripheral, 
automated machinery and similar system [1].  Cost of stepper 
system is significantly lower than that of servo system.  It is 
mainly because of removal of high cost of position feedback 
device and complicated feedback control.  Moreover, it does 
not require tuning of feedback control which needs extra 
expertise and effort.  Simple hardware and control 
configuration also improve system reliability.  

One of the most unfavorable features of stepper motor is 
mechanical resonance, especially at low speed (say, below 
300rpm).  The problem is less significant at high speed 
because the vibration exceeds the bandwidth of most 
mechanical system.  Resonance prevents stepper motor to run 
steadily at certain speed and reduce usable torque. Also, this 
prevent stepper motor to be used on application than require 
smooth low speed motion.   

The frequency of oscillation can be predicted for any 
motor/ load combination from the static torque/ rotor position 
characteristic, provided the system is lightly damped.  The 
natural frequency of rotor oscillation about the equilibrium 
position is [2] 
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T’: stiffness of the θτ  characteristic.  J : Rotor inertia, kg 
m2.  nf  : Natural frequency, Hz. 

Possible excitation of the vibration includes discrete 

stepping motion, detent torque of permanent magnet, pole to 
pole variation, etc.  With the popularity of micro-step drive, 
stepping ripple had been greatly minimized.  However, even 
if we use very fine micro-stepping, vibration and resonance 
still exist due to motor characteristics.  

Effort has been spent on improving the performance of 
stepper system in various ways.  Zribi and Chiasson 
implemented the position control by exact feedback 
linearization [4].   Chen et al. improved profile tracking 
performance by model based feedback controller with a 
least-squares based identification procedure [5].  Goodnick 
reported satisfactory result of electronic damping based on a 
torque observer [6].  Yang and Kuo reported effective 
damping algorithm based on a PLL position and velocity 
observer [7].  However, some of the mentioned algorithms are 
feedback based which require complicated parameter 
identification and high resolution position feedback.  The 
others which are sensorless based, requires large amount of 
computation.  Therefore, they may not be cost effective 
enough to be implemented on a commercial system.  The 
need of effective and efficient damping algorithm still exists. 

Simplified stepper model is used most of the time for 
efficiency.  The simplified stepper electrical dynamics and 
torque expression are shown here [3]. 
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τ : Torque output (Nm).  mK : Force constant (Nm/ A). rN : 
Number of pole pair.  θ : Rotor position (rad).  4dK : 
Amplitude of 4th harmonic detent torque (Nm).  

With micro-stepping control, the simplified model predicts 
only one resonant speed, which is caused by detent torque, the 
last term in (4).  However, this does not match with that of a 
commercial stepper in real life.  For example, the studied 
motor has three resonant speeds, which will be shown in later 
investigation.  In this paper, new stepper torque expression is 
proposed to model this characteristic without using high order 
equations and complicated identification procedures.  Model 
based damping algorithms are proposed for both open loop 
and servo mode.  Both simulation and experimental results 



 

show that the proposed algorithms can effectively eliminate 
the resonance and vibration at low speed. 

II.       MODELING OF STEPPER MOTOR 

A.      System for Investigation  
The block diagram of the hardware platform for our 

investigation is shown in Figure 1.  The controller is based on 
TI 2810 DSP which performs motion control, profile 
generation and current control.  The controller is programmed 
and commanded by a standard PC through JTAG interface.  It 
outputs PWM signals at 20 kHz to control a chopper power 
drive which outputs are connected to our investigated motor.  
Isolated current sensing is used to provide current feedback to 
the controller.  A commercial 1.8º hybrid stepping motor is 
chosen for our studies.  It is a Sanyo Denki 103H7126-0722, 
with coil resistance 0.9Ω, coil inductance 2.2mH, rotor inertia 

241036.0 mkg ⋅× − , rated current 3A and torque 1.27 Nm.  An 
optical encoder (1000 line, 4000 pulse/rev) is attached to the 
motor for performance monitoring and position control in 
servo mode.   

 

B.      Proposed Stepper Model  
The system mentioned above is configured to open loop 

control, holding current is set at 1.9A.  The natural frequency 
of the system calculated by (1) is 142Hz.  On driving the 
motor with smooth sinusoidal current, 3 resonant speeds are 
observed at about 43, 86 and 173 rpm.  These correspond to 
driving current at 36, 72 and 144 Hz.  They are likely to be 
caused by detent torque.  At the 1st resonance (43rpm/ 36Hz), 
by using (4), it is easy to observe that the frequency of detent 
torque ripple is HzHz 144436 =× , which matches with the 
calculated system natural frequency (142Hz).  Therefore, the 
1st resonance is excited by 4th harmonic detent torque ripple.  
For the 2nd and 3rd resonance, they occur at doubled speed of 
previous resonance.  Thus, there should be 2nd and 1st 
harmonic detent torque component which excite the 
resonances.  A torque expression (5) to describe this 
characteristic is proposed.  Note that dynamic friction is 
assumed zero for low speed operation. 
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1dK : Amplitude of 1st harmonic torque ripple (Nm).  1φ : 
Phase shift of 1st harmonic torque ripple (rad).  2dK : 
Amplitude of 2nd harmonic torque ripple (Nm).  2φ  : Phase 
shift of 2nd harmonic torque ripple (rad).  sF  : Static friction 
(Nm). 

 

C.      Motor Characteristic Identification 
To fill in the constants sddd FKKK 12124 φφ in (5), we 

need to identify the characteristic of the studied stepper motor.  
The stepper system described in part A.       is set to run in 

servo mode with the control algorithm described in (6) and (7).  
Block diagram of the model of servo system is shown in 
Figure 2 for reference.  mK  is set to 0.3 and rN  is set to 50 as 
given by motor specification.  fbθ  is obtained from optical 
encoder feedback.   
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Current control is done by digital PI current loop. pK  and 

iK  are proportional gain and integration gain of the current 
loop respectively. 
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Motor phase current ba ii are transformed to 
qd ii by the 

well known Park or Direct- Quadrature (DQ) transformation 
[3]. 
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External torque is applied to turn the shaft of the motor.  
The constants to be found are tuned until minimum resistive 
torque is observed and periodic torque ripple is removed.  The 
results of the identification are 006.04 =dK , 014.02 =dK , 

011.01 =dK , πφ =2 , 21 πφ = , 029.0=sF (clockwise), 
029.0−=sF  (anit-clockwise). 

 

 
Figure 1 Block diagram of the stepper system for 

investigation. 

 
Figure 2 Block diagram of the model of servo stepper system. 



 

III.       OPEN LOOP DAMPING ALGORITHM 

A.      The Damping Algorithm 
Based on the proposed torque expression (5) and the 

identified motor characteristic, the MatLab model of an open 
loop system is build as illustrated in Figure 3.  Control 
algorithm (11) (12) is proposed to damp out the resonances.  
The three terms of 

cmdqi _
 (12) are 4th, 2nd and 1st harmonic 

torque compensation.  Constants obtained in section II.       C.      
will be  substituted into (12).  
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PI current control is described by (8) (9) in previous section.  
For Park Transformation, it is basically the same as (10) with 

fbθ  replaced by position command cmdθ .  Assume rigid 
mounting of dummy load without load torque.  The load is 
described by (13).  D  is damping factor which is assumed to 
be 0.001 1−sradNm  for a lightly damped system. 
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With reference to the works of Yang et al. [8], the three 
phase SVPWM driving scheme is described by (14) – (17).   
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In addition, zero-order hold is applied on 
γβα ννν  to 

simulate the periodic PWM update of chopper drive. 
 

B.      Simulation Results 
In all simulations, the command is a speed ramp from 0 rpm 

at t = 0 to 200 rpm at t = 0.8 s.  In the first case (Figure 8), no 
damping is applied, therefore 0_ =cmdqi .  Three resonant 
speeds are observed at about 45, 80 and 170 rpm which match 
with the 43, 86 and 173 rpm observed in experiment.  With 
the injection of 4th harmonic torque compensation, the 1st 
resonance is damped out (Figure 5, an arrow is put to mark the 
1st resonance).  Similarly, injection of 2nd and 1st harmonic 
torque compensation can damp out the 2nd and 3rd resonances 
respectively (Figure 6 and Figure 6).  Amplitude of velocity 
error is most significant at 2nd resonance which is caused by 
the relatively large 2nd harmonic detent torque ripple.  Figure 
8 shows the results of injection of all the three harmonic 
torque compensation in 

cmdqi _
. The velocity ripple is almost 

completely eliminated in the whole low speed range.   
Note that at all three resonances, frequency of the velocity 

error is the same which corresponds to the natural frequency 
nf  of the system (calculated to be 144 Hz).   Besides, if load 

torque is applied, the damping performance is expected to 
degrade.  It is because the equilibrium position of the rotor 
will shift a certain degree from the original position.  Fine 
tuning of  1φ  and 2φ  will be needed to offset the change.  

 

 
Figure 3 Block diagram of the model of open loop stepper 

system. 

 
Figure 4 Simulated velocity feedback (red) and error (blue) of 

open loop system without damping. 

 
Figure 5 Removal of 1st resonance by injection of 4th 

harmonic torque compensation. 
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Figure 6 Removal of 2nd resonance by injection of 2nd 

harmonic torque compensation. 

 
Figure 7 Removal of 3rd resonance by injection of 1st 

harmonic torque compensation. 

 
Figure 8 Removal of all three resonances by injection of 1st 2nd 

and 4th harmonic torque compensation. 

 

C.      Experiment Results 
The motor is set to run at constant velocity at the 1st 

(43rpm), 2nd (86rpm) and 3rd (173rpm) resonant velocity to 
observe the effect of the proposed damping algorithm.  The 
1st resonance is damped out by the injection of 4th harmonic 
torque compensation (Figure 9).  The 2nd resonance is damped 

out by injection of 2nd harmonic torque compensation (Figure 
10).  The 3rd resonance is damped out by injection of 1st 
harmonic torque compensation (Figure 11).  Note that the 
frequency of velocity error is the same in all three resonances.  
This means that they are caused by the same mechanical 
natural frequency.  However, they are triggered by torque 
ripple of three different harmonics.  Resonance occur when 
the frequency of any one of the torque ripple harmonics match 
with the natural frequency.  The experimental results match 
well with those of simulation.  Note that the high frequency 
ripple is the differentiation noise of QEP based velocity 
measurement.   

 
 
 

 
Figure 9 Experimental results of velocity error at 43 rpm, 

without damping (left) and with damping (right). 

 
Figure 10 Velocity error at 86 rpm, without damping (left) and 

with damping (right). 

 
Figure 11 Velocity error at 173 rpm, without damping (left) 

and with damping (right). 
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IV.       SERVO MODE DAMPING ALGORITHM 

A.      The Damping Algorithm 
MatLab model of a servo controlled stepper system is built 

as illustrated in Figure 2.  Damping algorithm (18) (19) is 
proposed for smooth low speed servo motion.  The first three 
terms of (19) are for position control where velpK _ , pospK _  
and  posiK _  are control parameters of the standard position 
PID loop.  The four terms afterward are torque ripple 
compensation at 4th, 2nd, 1st harmonics and static friction 
compensation.   
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where 
fbcmderr ωωω −=  and 

fbcmderr θθθ −=  

 

B.      Simulation Results 
Simulated velocity feedback and error of the system are 

shown in Figure 12 and Figure 13. In both simulations, the 
command is a speed ramp from 0 rpm at t = 0 to 100 rpm at t = 
1 s.  In the first case (Figure 12), no damping is applied, only 
position PID controller.  The smoothness of the motions is 
unsatisfactory.  Figure 13 shows the results with injection of 
torque compensation components in 

cmdqi _
 as described in 

(19).  The smoothness of the motion is significantly improved.  
Note that some high frequency ripple is observed before t = 
0.1s.  This is caused by the quantization noise of encoder 
position feedback which results in noise in the position loop.  
The effect of finite resolution of encoder is modeled by 
quantization of

fbθ .  For our investigated system, the encoder 
is 4k pulse/rev.  This means the position resolution is only 20 
counts per step with our 200 step/rev stepper motor.  It is 
expected to limit system position and current control 
accuracy.   

 

 
Figure 12 Simulated velocity feedback (red) and error (blue) 

of servo system without damping. 

 
Figure 13  Simulated velocity feedback (red) and error (blue) 

of servo system with proposed damping algorithm. 

 

C.      Experiment Results 
Experiment is done to verify the simulation results.  The 

system is set to move at low speed without damping.  
Therefore, 1dK 2dK 3dK  and sF  of (19) are set to 0.  
Significant vibration is observed at any speed under 100rpm.  
Then, proposed damping algorithm is applied and smooth 
motion down to 30rpm is observed.  

As velocity feedback is found by differentiating position 
feedback, the resolution of the velocity depends on the sample 
rate as well as the resolution of the encoder [9].  In our system 
for investigation, encoder resolution is 4k pulses/ rev and the 
calculation is done at 20 kHz.  This means the resolution is 

602040001 ×× k  = 300rpm!  A low pass filter is needed to 
filter the velocity feedback. However, the LPF makes the 
system less responsive to correct velocity error.  LPF in the 
experimental system is implemented by a first order digital 
IIR at 32Hz bandwidth.   

V.       CONCLUSION 
The characteristic of a commercial stepper motor is 

successfully modeled by the proposed torque expression.   
Simulation and experimental results show that the proposed 
damping algorithm can effectively eliminate low speed 
resonance and vibration in both open loop and servo mode.   
More works will follow to study its application issue and 
parameter sensitivity.  
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