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Abstract—This paper presents a novel state estimation
method on permanent magnet linear synchronous motors
(PMLSMs) through the H, filtering viewpoint. The dynamic
characteristic of the PMLSM is analyzed and the discrete
state equation model for the PMLSM is developed. To give
the velocity and position estimation of the linear motor, an
H,, filtering problem which allows certain presence of
uncertainties is constructed. The uncertainties include
parameter variations, noises and unmodeled dynamics.
Afterwards the H, filtering problem is solved using a linear
matrix inequality (LMI) approach. The simulation results
show that the proposed method can predict the motor
velocity and position with minimum error.
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I. INTRODUCTION

With the emergence of high-performance power
electronics and powerful digital signal processors (DSPs),
permanent magnet linear synchronous motors (PMLSMs)
are increasingly utilized in industrial automation,
transportation, and domestic appliances [1-3]. PMLSMs
have many advantages, such as quick response, high
sensitivity, good tracking performance, etc., so they are
gradually taking the place of combinations of rotary
motors and lead-screws. To achieve high transient and
steady performance, linear position sensors are required
for the servo loop feedback. However, linear position
sensors account for a large proportion of the total system
cost. Furthermore, most linear position sensors have
problems of difficult installation, low reliability, and are
sensitive to alien surroundings, such as vibration and
moisture. In some applications, inadequate space to do
not permit the mounting of a linear position sensor.

Due to the above-mentioned disadvantages, the idea
of eliminating mechanical sensors has attracted many
research activities during the past decade. Many practical
applications have been published. Unfortunately, most of
them are based on speed control of rotary motors only.
There is still little in recent literature that concerns with
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sensorless control of PMLSMs.  Kalman filtering
technique has once been used to estimate the velocity and
position of a PMLSM, however, it requires the exact
mathematical model of the plant.

In this paper, the authors proposed a novel state
estimation method, which is based on H,, filtering. An H,,
state estimation problem is regarded as a special case of
H,, filtering problems. In the H., filtering, the presence of
some uncertainties is allowed, and robust performance
can still be achieved. This paper first describes the
dynamic model of the PMLSM and develops the discrete
state equations. Then an H, filtering problem is
constructed to give state estimation expressions. To solve
the H, filtering problem, a linear matrix inequality
approach is proposed. Finally, numerical simulation is
made and the validity of the novel method is evaluated.

II. MATHEMATICAL MODEL

The permanent magnet linear motor used in this
research is a sinusoidally commuted motor. According to
the unification theory on motors, the dynamic
characteristic of a PM linear motor can be described with
Park’s equations in d-¢ coordinate system, which moves
synchronously with the mover, by applying Park’s
coordinates transformation [4].

Vg = Rig + phy + 0 kg, (N
Va = Rig+ pha— ok, (@)
A, = Ly, 3
g = Leig+ hyp 4)

where v; and v, are stator voltages at direct-axis and
quadrature-axis; iy and i, are stator currents at direct-axis
and quadrature-axis; R is the stator resistance; p is the
differential operator, d/df; A, and A, are stator linkages at
direct-axis and quadrature-axis; w, is the equivalent
synchronous rotary angular velocity; Ly and L, are stator
inductances at direct-axis and quadrature-axis; A, is the
permanent magnet linkage.

The following equation on the motor’s total input
power in d-g and a-b-c coordinate systems holds.

power = Vi, + Vi + Veie = 3(Vaiq T v,4i,)/2. 5)

And the electromagnetic thrust and mechanical
equations are described in (6) and (7), respectively.

Fo=3N,(z/t)(hiy — Ayia)/2

= 3N,(/t)[Agig + (La— Lg)iaig)/2, (6)

F,=F, +By+ Mpv. 7

where F, is the electromagnetical thrust; N, is the number

of pole pair(s); 7 is the pole pitch; F; is the load friction; v



is the actual linear velocity; B, is the damping coefficient

associated with velocity; M is the mass of the moving part.

The constant electromagnetic energy principle is
employed when the electromagnetic thrust expression is
deduced, and linear motion is regarded as equivalent
rotary motion, where , is the equivalent mechanical
angular velocity. Then these relationships hold: w, = va/t
and w; = N,0,.

The above dynamic equations can be adapted to state-
space format by choosing X = [iy iy, v, x]" (x is the
displacement) as state variables vector, U = [v,, vq]T as
input vector, and Y = [iy, iq]T as output vector.

X=f(X)+BU, )
Y= h(X). )

In order to implement numerical simulation and
digital control, the continuous-time state equations must
be changed into linear discrete-time state equations.

X(k+1) =a(k)X(k) + G(k)U(k), (10a)

k) =HK)X(k). (10b)

where k, k+1 denote the k -th and the k+1 -th sampling

moment, respectively. @(k) is the state transition matrix.

The relationships between matrices @(k), G(k), H(k) and
the matrices in continuous-time system are as follows.

Mk)= """ =1+ FKT) T, (11)
G(k)= fv e1~~(kT,\-)-tB(k7—; )dt ~B(KT,) T, (12)
H(k) = H(KT); (13)

where [ is a 4x4 unit matrix; F() is the Jacobian matrix of

S,

III. THE H,, FILTERING

The H,, filtering technique has been widely studied
for the benefit of different time and frequency domain
properties. An H,, filter is designed such that the H,, norm
the system, which reflects the worst-case “gain” of the
system, is minimized [5]. J. S. Kim, I. W. Yang, Y. S.
Kim, and Y. J. Kim [6] use the H., filter as an observer of
the state feedback controller. Experimental results show
that the H.,, filter has excellent estimating property. It has
been used in shaft vibration suppression control of the
industrial motor drive system. K. Reif, F. Sonnemann,
and R. Unbehauen [7] also propose an H,, filtering
observer for continuous-time nonlinear systems. The
remaining nonlinear terms are treated as uncertainties and
are implemented in the proposed observer design by a
worst case valuation in such a way that these uncertainties
can be tolerated. To examine the practical usefulness of
the proposed observer they applied it to an induction
motor for the estimation of the rotor flux and the angular
velocity. U. Shaked and Y. Theodor [8] give a tutorial to
H.-optimal estimation of linear, time-varying processes,
in both the continuous- and the discrete-time cases. Four
illustrative examples are given that demonstrate the
various estimation schemes.

In this paper, the state estimation of the motor is
regarded as a special case of H, filtering problems.

276

Considering the system noises and the measurement
noises, the discrete-time equations are rewritten in a
general form of H,, control.

X(k+1) =K)X(K) + B(K)W(K) + GK)UK),  (14a)
2(k) = CLX(K), (14b)
Y(k) =HK)X(K) + Do (K)H(K). (14c)

where C| = I4,y, 1.¢., Z(k) = X(k).
Assume the H,, filter has the following structure,
Xk 1) =Xk + GIOUK) + KLY )-HRX ()],
(15a)
Z(k) = LX), (15b)
and it has the same initial states with the practical system,
i.e. all are zero.
Subtracting (15) from (14), we get the errors dynamic
model, which can be written in the form of H,, controller.

X(k+1) =@(X(K) + B W(K) + Uk),  (16a)
E(k) = CX(K), (16b)

Yu(k) =H(QX (k) + Doy () W(K), (16¢)
Uuk) = K (R)Y(K). (16)

where X, (k) = X(k)-X(k), E(k) = Z(k)-Z(k).
Now we can solve the controller K(k) in the error
system using a linear matrix inequality approach.

IV. LINEAR MATRIX INEQUALITY APPROACH

There are three approaches to H,, filtering [5]:

1) algebraic Riccati equation (ARE) approach;

2) frequency domain approach;

3) linear matrix inequality (LMI) approach.

However, the first two methods require very strict
constraints, or have computational complexity. On the
other hand, the linear matrix inequality approach has
proved an effective method to solve convex optimization
problem using numerical interior point technique. Instead
of arriving at an analytical solution, the LMI approach is
to reformulate a given problem to verifying whether an
LMI is solvable or to optimizing functionals over LMI
constraints [9].

For discrete-time system, the solution to an H,
controller has turned to solving the following three LMI’s,
and the final solutions R = R” and S = ST make the H,,
performance index yreach its minimum or optimum value
[10].

N :OT_ARAT—R ARCT BI_N "
..... ORI} CRAT -y +CRC i Dy, R.J <0- (17
- B Df) A
. | ATsa-s  spaT il
..... : 51} BISA -y +B[SB, D], (18)
LY ] G Dy, -]
R I (19)

L S}o.

where N and Ny denote bases of the null spaces of (B,’,
Dy,") and (C,, D»), respectively.

The LMI approach is divided into 6 steps in
numerical simulation [11].



S1. Solve the LMIs in (17)~(19) and get a feasible

solution (R, S, y); T T T
S2. Decompose / —RS to two matrices M and N with - |l |
full column rank using singular value decomposition i
technique, MN"=1-RS; 2r ]
S3' Let DK:(DIJFZDIZ)DO(DZIDEH) > Where DO IS an VAEI EIIEH EIIEIZ EIIEIS I]Ililfl .EIIEIE EII‘ZIE EI‘EI? EII‘]E EIIEIB 0.1
arbitrary matrix that meets o, (D, + D;,DyDy; )<y, the - e
superscript “+” denotes the Moore-Penrose pseudo- 5 i
inverse of a matrix; T, |
S4. Solve the following equations and get their -
solutions By and Ck: T
NBy =-SB,Dg +K§, (20) 40001 om oo oa _n'n?)nﬁs 07 0 00 0
time (s
Ck M = DGR+ K- 2D Fig. 2. Measured motor currents
S5. Calculate Ag(see, e.g., [11]); Upper: d-axis current; Lower: g-axis current
S6. Obtain the “central” controller e
K(k)=Dy + Cy (sl — Ag) ' By . ol
This approach can be ecasily programmed using s / ]
MATLAB’s LMI control toolbox [10]. It is more efficient z
than DGKF’s “2-Riccati equations” method. 7" ]
0.5

L . . L L . L . L
o 001 002 003 004 005 008 O0O7 008 009 01
time (5]

n

V. SIMULATION RESULTS

The parameters of the PMLSM are listed in the : / ]
appendix. The discrete-time state equations of the motor 1
in d-qg coordinate system are used for numerical S S S

. . . . .. . o 001 o002 003 004 005 008 007 003 009 01
simulation. The unit velocity step response is investigated fime (3)

=]
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= o
in

=
in

actual position ()

=
o

=

with a step of T, = 5us. The simulation results are shown Fig. 3. Velocity step response curves
in Fig. 1 through Fig. 6. Upper: actual value; Lower: estimated value
The instantaneous input voltages and motor currents 0is

are “measured” in d-g coordinate system. Their wl |

waveforms are shown in Fig. 1 and Fig. 2, respectively. In - /

Fig. 3 the estimated velocity curve is plotted in '

comparison with the actual value. In Fig. 4 the estimated ¢ |

position and actual position are also compared. From Fig. O e o 0T omi O O 0o om om o

5 we know the error between estimated and actual time (<)

velocity is very small. The maximum relative error is

about 1.2%. The error between estimated and actual I 7

position is also drawn in Fig. 6. The position estimation /

error is less than 6 pm. 1
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Fig. 4. Position curves under closed-loop velocity step-response trial
Upper: actual position; Lower: estimated position
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Fig. 1. Measured input voltages time ()
Upper: d-axis voltage; Lower: g-axis voltage Fig. 5. Error between estimated and actual velocity
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Fig. 6. Error between estimated and actual position

VI. CONCLUSION

Results show that the state estimation can be
considered in an H,, filtering sense. This method can give
accurate velocity and position information in spite of
uncertainties in the system. So the estimation algorithm is
robust to parameter variations and external disturbances.
The LMI approach is effective to solve H,, filtering

problem, which avoids

treating algebraic Riccati

equations. Simulation results show that the estimation
errors are very small and the need for velocity and
position sensors can be eliminated.

APPENDIX

The motor parameters are listed below:

phase resistance R: 8.6 ohm;

phase synchronous inductance L: 6 mH;
permanent magnet flux linkage 4: 0.35 V's;
pole pitch of the permanent magnets 7: 0.031 m;
pole pair number N,: 1;

total mass of moving parts M: 1.635 kg;
viscous damping coefficient B,: 0.1 N's/m;

load F;: 10N
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