
H∞ Robust Control of Permanent Magnet Linear Synchronous Motor in  

High-Performance Motion System with Large Parametric Uncertainty 
 

Yuan-Rui Chen1        Norbert C. Cheung2        Jie Wu1 

1: Electric Power College, South China University of Technology,  

Guangzhou 510640, China, e-mail: chenyr@21cn.com 

2: Department of Electrical Engineering, Hong Kong Polytechnic University,  

Hung Hom, Kowloon, Hong Kong SAR, China, e-mail: eencheun@polyu.edu.hk 

 
Abstract- In order to meet the demands of high-

acceleration/deceleration and high-precision motion profiles, 

many motion control systems began to use direct-drive linear 

motor as the prime motion actuator.  This arrangement has 

the advantage of providing high-performance motions with 

reduced mechanical components, but its major drawback is 

the effect of load variation on the overall system control.  

Unlike conventional ball-screw drive, a linear direct-drive 

system eliminates the mechanical couplings, rotary-to-linear 

translators, and reduction gears.  Under this arrangement, 

any change or disturbance in the load will be directly reflected 

back to the motor and the control system.  This will cause 

large deterioration in the motion profile.  In this paper, the 

authors proposed to use an H∞ robust-controller to overcome 

the load uncertainty problem.  In the investigation, a 

Permanent Magnet Linear Synchronous Motor (PMLSM) 

with large parametric uncertainty is chosen as the target 

study. First, the state space equations of the motor are 

established. Then the H∞ control theory is applied to design a 

robust controller which allows mass variation of the moving 

part ranging from 0 to 100 percent of nominal load. To 

minimize the error between the actual response and the 

reference, the controller parameters are optimized using 

genetic algorithms (GA). The simulation and experimental 

results both show that the system can achieve robust 

performance under large load variations.  Thus, the proposed 

method is an effective mean of combating load variations and 

load disturbances in high-performance direct-drive systems. 

I. INTRODUCTION 

With the recent advances of computer technologies, 

control theories and material technologies, more and more 

linear motors are employed in applications ranging from 

mass transportation to factory automation [1, 2, 3]. Among 

these applications, PMLSMs are frequently used.  This is 

due to their simple structure, ease of manufacture and 

simple control.  In this paper, we study the case of PMLSM 

used as a transportation system in factory automation. For 

this purpose, the mass of the moving part varies frequently 

under no-load or full-load conditions. The friction of the 

motion system also varies frequently and significantly. 

Therefore it is necessary to design a robust controller that is 

insensitive to the variations of mass and friction, to ensure 

that the system is stable system under arbitrary loads. 

Obviously, it is difficult to meet above specifications 

using conventional PID controllers.  PID controllers cannot 

make the system stable under certain conditions. If applying 

linear system theory can solve the control problem, then the 

accurate mathematical model of the system is required.  

However, the variation of mass and friction causes 

parametric uncertainty. In this paper, an H∞ control strategy 

is proposed to overcome the above-mentioned 

disadvantages. In H∞ control system, the exact model is not 

required, and some uncertainty is allowed [4, 5, 6].  

This paper analyses the system dynamic 

characteristics, deduces the state space model of the system, 

and designs an optimal or sub-optimal H∞ controller for the 

PMLSM from the H∞ control theory. To minimize the error 

between the actual velocity response and the ideal velocity 

reference, the controller parameters is finally optimized 

using a kind of genetic algorithm. The simulation and 

experimental results show that the proposed control method 

is effective and highly robust, and it is very suitable for 

implementation in direct-drive linear motion systems with 

large load variations. 



II. DYNAMIC MODEL OF THE SYSTEM 

Firstly, the d-q dynamic model for the PMLSM is 

studied.  The d-q coordinate system is a �rotating� 

reference frame that moves at synchronous speed. The flux 

linkage equations are as follow. 
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where Ψd, Ψq, Ψf are the flux linkage of direct axis, 

quadrature axis and permanent magnet, respectively. Ld, Lq, 

Mf and id, iq, if are inductance and current of d-, q-axis and 

equivalent permanent magnet, respectively. For surface 

PMs, we have Ld = Lq [2]. Ψf, Mf and if are all constant. 

The voltage equations of the PMLSM are shown in 

(2): 
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where ud, uq are d-, q-axis armature voltage, R is phase 

resistance, ω is equivalent �electrical angular velocity�, ω = 

vπ/τ,  v is the velocity of moving part, τ is the pole pitch, p 

is derivative operator, p = d/dt. 

The electromagnetic thrust is 

Fm = Pelm/v = 1.5pn(π/τ)( Ψdiq −Ψqid) 

= 1.5pn(π/τ)[ Ψfiq+ (Ld −Lq)idiq]            (3) 

where Fm is the output electromagnet thrust, Pelm is the 

electromagnet power, pn is the number of pole-pair(s). In 

this paper, pn = 1. 

Lastly, the motion equation of the system is obtained 

according to Newton�s mechanics law: 

dv/dt = (Fm− f −Rvv)/m                         (4) 

where m is the mass of moving part including the load, f is 

the total friction, Rv is the damper coefficient associated 

with velocity. 

When id = 0 control scheme is applied, the d-axis flux 

linkage is equal to the permanent magnet flux linkage. The 

dynamic model of the system can be simplified. 

Considering the velocity v, q-axis current iq and total 

friction coefficient µ as state variables, we obtain the state 

equation and output equation of the system as follow. 

BuAxx +=&                                                          (5) 

Cxy =                                                                  (6) 
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u = uq, 

C = [1  0  0], 

where the mass of the moving part when under rating load 

is up to 10 times of that when under no load. 

III. THE PROPOSED METHOD 

In H∞ theory, J. C. Doyle et al. have proved that a 

standard H∞ problem can be solved by finding the unique 

stabilizing solutions to two algebraic Riccati equations 

(AREs) [7]. Genetic algorithms have been found an 

effective method for searching the global optimal solutions 

without the derivative information [8]. It can avoid going to 

a local optimal solution by random searching strategy. In 

this section, we will introduce how to design an H∞ 

controller that is robust to parameter uncertainty. Then the 

controller parameter is optimized using genetic algorithm. 

A. H∞ Controller Design 

 

 

 

 

 

 

Fig.1 shows the control system block diagram. We 

define S(s) as the sensitivity function. 

S(s) = [I + K(s)P(s)]−1                                       (7) 

K(s) P(s)
-

e d

yr u

Fig. 1. The control system block diagram



S(s) is the closed-loop transfer function from 

disturbance d to error e. So the influence of disturbance to 

control error can be reduced when tuning down the gain of 

S(s). We introduce a weight function W(s) to error output 

and redraw the system block diagram in the form of 

standard H∞ problem, which is shown in Fig.2.  

 

 

 

 

 

 

 

 

 

 

From disturbance w, i.e. d, to weighted error output z, 

i.e. y1a, the closed-loop transfer function Tzw(s) is 

Tzw(s)= W(s)S(s)                                            (8) 

The optimal H∞ control problem is to find a feedback 

controller K(s), which can make the system internally stable 

and minimize the H∞ norm of Tzw(s), i.e., 

0)(min γ=
∞

sTzwngKstabilizi
                                        (9) 

In practice, usually we can only get a sub-optimal 

solution that makes ||Tzw(s)||∞ = γ >γ0. Considering W(s) as 

part of the system, the model of the augmented controlled 

plant has the following form. 
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By using the DGKF method [7], when the augmented plant 

G(s) meets certain constraints, we can solve the following 

algebraic Reccati equations: 

0)( 112211 =+−++ CCXBBBBXXAXA TTTT  (11) 

0)( 112211 =+−++ TTTT BBYCCCCYYAAY    (12) 

If (11) has positive semi-definite solution X ≥0 that 

makes A+(B1B1
T−B2B2

T)X stable, (12) has positive semi-

definite solution Y ≥ 0 that makes A+(C1
TC1−C2

TC2)Y 

stable, and λmax(XY)<1, then the (sub-)optimal H∞ controller 

K(s) is obtained. 
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In practice, we can handle the above procedures with 

the help of numeric calculation and simulation tools, e.g. 

MATLAB.  

B. Genetic Algorithm Optimization 

Once the sub-optimal H∞ controller is obtained. We 

can use genetic algorithm to search a best parameter 

configuration for the controller by the following steps.  

Step 1. Give a reasonable range of these parameters, then a 

population with size N is initialized randomly. 

Step 2. Check if the population meets the fitness function. 

Here we define the fitness function ffitas  

              ∫
∞

=
0

2min dtef fit    (14) 

             where e is the error between the actual output and 

the reference. 

Step 3. Selection and reproduction. The individuals with 

better fitness will be selected into next generation. 

Step 4. Crossover with probability Pc. 

Step 5. Mutation with probability Pm. 

After repeating step 2 to step 5 for a few iterations 

(generations), the best controller will be obtained. 

IV. SIMULATION AND  HARDWARE IMPLEMENTATION 

The proposed scheme was verified by both numerical 

simulation and experiment with a PC computer and a DSP 

control card from dSPACE company.  

A.  Simulation Results 

In this paper, the weight function is selected as W(s) 

= 0.5(s+1)/(0.5s+1). The motor parameters are listed in the 

appendix. Assuming the mass as 5 times of moving part and 
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Fig. 2. The standard H∞ problem 



substituting these parameters into the system equations, we 

can now design the H∞ controller using robust control 

toolbox of MATLAB [9]. The ITAE type I is considered as 

standard model with the third order and natural frequency 

10 rad/sec. After 8 γ iterations, the optimal H∞ controller is 

solved. Then we can use GA to optimize the controller 

parameters. Here the population size N is chosen as 25. The 

crossover probability Pc and mutation probability Pm are 0.9 

and 0.005, respectively. After 20 generations, the best 

configuration of the H∞ controller parameters is reached. 
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Fig.3 shows the simulation result of velocity step 

response with mass variation range from 0 to 100 percent of 

nominal load. The system has excellent performance when 

the mass is 5 times of system mass, the overshoot is very 

little and the settling time is short. When the mass decreases, 

the overshoot goes down but the settling time increases. On 

the contrary, when the mass increases, the overshoot 

increases, and the settling time also increases. However, the 

closed-loop system is stable no matter how it is under any 

load. So the controller is robust even if the controlled plant 

has large parametric uncertainty.  

 

 

 

 

 

 

 

 

 

 

 

 

B.  Hardware Implementation 

The overall experimental system setup is shown in 

Fig.4. An incremental linear encoder is used to measure the 

actual position of the moving part as a reference. An 

integrated IGBT circuit CPV363M4K serves as the power 

drive module. An IC IR2132 is used to drive the gates of 

the IGBT [10]. The main circuit is isolated from the 

controller board by opto-couplers. Since it is a direct digital 

control method, the whole system is simple and clear. Fig.5 

shows the schematic diagram of the proposed drive system. 

The internal loop is controlled by a hysteresis current 

controller. It has a highly rigid response to current change. 

So the PMLSM can almost operate in sinusoidal current 

mode.  
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Fig. 5. The schematic diagram of the drive system

Fig. 4. The overall setup of experimental system 

Fig. 3. Simulated velocity step responses  
with different masses 

Fig. 6. Actual velocity step responses  
under no-load and full load 

−o−  starting without load, at 1.2s full load is suddenly added 
  starting with full load, at 1.2s load is suddenly emptied 



In Fig.6, the actual velocity step responses under no-

load and full load are given. Two worst cases have been 

examined. One is that the motor starts without load, then 

full load is suddenly exerted at 1.2s. The other is that the 

motor starts with full load, then the load is suddenly 

emptied at 1.2s. Both are coincident with the simulation 

results. The system is stable no matter how much load it 

carries. However, if this plant is controlled by a PID 

controller, the PID coefficients must be modified frequently 

with the variation of the total mass in real time. And, the 

whole system will be unstable when it is under full load. 

Even if it is stable, the step response is worse with large 

overshoot and long settling time. 

V. CONCLUSIONS 

This paper describes the use of H∞ controller in 

PMLSM drive in the application of automated transport 

system with large load variations and friction disturbances. 

A kind of GA optimization technique is also used to find 

the best controller parameter configuration. The simulation 

and experimental results show that the optimized H∞ 

controller has a robust performance. It can make the closed-

loop system internally stable and can handle large 

parametric uncertainty. The proposed controller is superior 

to PID controller and other similar linear controllers. Both 

the simulated result and the implementation result show 

that H∞ design method and GA optimization technique are 

very suitable for PMLSM drives with model or parametric 

uncertainty or disturbance spectrum uncertainty. 

VI. APPENDIX 

          The motor parameters used in the simulation and the 

actual implementation are listed as follows: 

phase resistance R: 4.5 ohm; 

phase synchronous inductance L: 3.0 mH; 

permanent magnet flux linkageΨf: 0.3438 V·s·rad−1; 

pole pitch of the permanent magnets τ: 0.03048 m; 

number of pole-pair(s) pn: 1; 

total mass of moving part excluding load m: 1.635 kg; 

viscous damping coefficient Rv: 0.1 N·s·m−1; 

total friction coefficient µ: 1 N·kg−1. 
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