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Abstract-A robust H_ controller for Permanent Magnet
Linear Motor (PMLM) in transportation systems is
designed in this paper. First, the state space equations of
the motor are established. Then the H_ control theory is
applied to design a robust controller which allows mass
variation of the moving part ranging from 0 to 100 percent
of nominal load. The simulation and experimental results
show that the system can achieve robust performance
under either no load or nominal load.

I. INTRODUCTION

With the newly development of computer, control theory
and material technology, more and more linear motors are cast
into applications in the areas of transportation and factory
automation. Among these applications, PMLMs are frequently
used due to their simple structure, ease to manufacture and
control. In this paper, we study the case of PMLM used in
transportation system in factory automation. The mass of the
moving part varies frequently due to the system is often under
load ranging from 0 to 100 percent of nominal load, and the
friction also varies consequently. So it is necessary to design a
robust controller, which is not very sensitive to the variation of
mass and friction, to ensure the system stable under arbitrary
load within rating range.

Obviously, it is difficult to meet above specifications using
conventional PID controller. Sometimes it could not make the
system stable. If the linear system theory is applied, then
accurate mathematical model of the system is required.
However, the variation of mass and friction causes parametric
uncertainty. Fortunately, H,, control theory gets rid of these
disadvantages. The exact model is no more required, and some
uncertainty is allowed in the system. So H,, theory is suitable
for control engineering practice.

This paper analyses the system dynamic characteristics,
deduces the state space model of the system, and designs an
optimal Hoo controller for the PMLM from the Hoo control
theory. The simulation and experimental results are given to
show the effectiveness of the controller and the robustness of
the closed-loop system.

II. DYNAMIC MODEL OF THE SYSTEM

The d-g dynamic model is frequently used for sinusoidally
excited PMLMs. The d-q coordinate system is a “rotating”

reference frame that moves at synchronous speed. The flux
linkage equations are as follow:

v, | [2. o M, i,

v, |=[0 L, 0 |i (1)

Y 0 0 M,|i
where ¥, ¥,, are the flux linkage of direct axis, quadrature
axis and permanent magnet, respectively. Ly, L, M,and i, i, i
are inductance and current of d-, g-axis and equivalent
permanent magnet, respectively. ¥; M and i are all constant.

The voltage equations of the PMLM are listed below:
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where u, u, are d-, g-axis armature voltage, R is phase
resistance, o is equivalent “electrical velocity”, w = vi/z, v is
the velocity of moving part, 7 is the pole pitch, p is derivative
operator, p = d/dt.

The electromagnetic thrust is

Fm = Pm/v = 1.5p(m/7)( S”diq —S”qid)

= 1.5p,(z/7)[ it (L,—L)ij] 3)
where F, is the output electromagnet thrust, P, is the
electromagnet power, p, is the number of pole-pair(s). In this
paper, p,= 1.

At last, the motion equation of the system is obtained
according to Newton’s mechanics law:

dvidt=(F —f-R v)/m 4)
where m is the mass of moving part including the load, f is the
total friction, R, is the damper coefficient associated with
velocity.

When i, = 0 control scheme is applied, the d-axis flux
linkage is equal to the permanent magnet flux linkage. The
dynamic model of the system can be simplified. Considering
the velocity v, g-axis current i, and total friction coefficient x as
state variables, we obtain the state equation and output equation
of the system as follow:

X = Ax+ Bu 5)
y==Cx (6)
where
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where the mass of the moving part when under rating load is up
to 10 times of that when under no load.

III. H,, CONTROL ALGORITHM

Fig.1 shows the control system block diagram. We define S(s)
as the sensibility function.

S(s) = [I+ K(s)P(s)] ' (7
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Fig.1 The control system block diagram
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Actually S(s) is the closed-loop transfer function from
disturbance d to error e. So the influence of disturbance to
control error can be reduced when tuning down the gain of S(s).
We introduce a weight function W(s) to error output and
redraw the system block diagram in the form of standard H,
problem, which is shown in Fig.2. From disturbance w to
weighted error output z, the closed-loop transfer function 7,(s)
is

T.,(s)= W(s)S(s) ®)
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Fig.2 The standard H,, problem

The optimal H, control problem is to find a feedback
controller K(s), which can make the system internally stable
and minimize the Hoo norm of 7, (s), i.e.,
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By using the DGKF method, when the augmented plant G(s)
meets certain constrains, we can solve the following algebra
Reccati equations:

A" X + XA+ X(BB -B,BI)X+C/C, =0 (11)
AY+YA" +Y(C/C,-~CIC,)Y+B,B] =0 (12)
If (11) has positive semi-definite solution X> 0 that makes
AHB,B-B,B,)\X stable, (12) has positive semi-definite
solution ¥> 0 that makes A+HC,’C—C,'C,)Y stable, and the

maximum eigenvalue of XY meets 4,,,(XY)<1, then the optimal
H,, controller K(s) can be obtained.

A+B B/ X -(1-XY)"'YC]C,-B,B] X
K(s)= ’
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In practice, we can handle the above procedures with the
help of numeric calculation and simulation tools, e.g.
MATLAB.

IV. SIMULATION AND EXPERIMENTAL RESULTS

(13)

The proposed scheme was verified by both numerical
simulation and experiment with a PC computer and a DSP
control card from dSPACE.

A Simulation Results

In this paper, the weight function is selected as W(s) =
0.5(s+1)/(0.5s+1). Fig.3 shows its magnitude-frequency and
phase-frequency characteristics. The motor parameters are
listed in the appendix. Assuming the mass as 5 times of moving
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Fig.3 The Bode plot of weight function #s)



part and substituting these parameters into the system equations,

we can now design the H, controller using robust control

toolbox of MATLAB. The ITAE type I is considered as

standard model with the third order and natural frequency 10

rad/sec. After 8 y iterations, the optimal H,, controller is solved.
y=10.9922,

(s +1.152x10* £1.987x10%)

X
(s +2.064x10* £2.062x10%7)
(s+1407)(s +26.64)
(s+8.75+11.77i)(s +4.651)

Fig.4 shows the simulation result of step response with mass
variation range from 0 to 100 percent of nominal load. The
system has excellent performance when the mass is 5 times of
system mass, the overshoot is very little and the settling time is
short. When the mass decreases, the overshoot goes down but
the settling time increases. On the contrary, when the mass
increases, the overshoot increases, and the settling time also
increases. However, the closed-loop system is stable no matter
how it is under any load. So the controller is robust even if the
controlled plant has large parametric uncertainty.
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Fig4 Step responses with different masses

B Hardware Implementation

The overall experimental system setup is shown in Fig.5. An
incremental linear encoder is used to measure the actual
position of the moving part as a reference. An integrated IGBT
circuit CPV363M4K serves as the power drive module. An IC
IR2132 is used to drive the gates of the IGBT. The main circuit
is isolated from the controller board by opto-couplers. Since it
is a direct digital control method, the whole system is simple
and clear. Fig.6 shows the schematic diagram of the proposed
drive system. The internal loop is controlled by a hysteresis
current controller. It has a highly rigid response to current
change. So the PMLM can almost operate in sinusoidal current
mode.

In Fig.7, the actual position step responses under no-load and
full load are given. They are coincident with the simulation
results. The system is stable no matter how much load it carries.

Fig.5 The overall setup of experimental system
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Fig.6 The schematic diagram of the drive system
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Fig.7 Actual step responses under no-load and full load

However, if this plant is controlled by a PID controller, the
coefficients must be modified with the variation of the total
mass. And, the whole system will be unstable when it is under
full load. Even if it is stable, the step response is worse with
large overshoot and long settling time.

V. CONCLUSIONS AND DISCUSSIONS

The simulation and experimental results show that the H_,
controller has robust performance. It can make the closed-loop
system stable and can handle large parametric uncertainty. The
proposed controller is superior to PID controller and other
similar linear controllers. By employing the loopshaping to the
controlled plant in frequency domain, the H, design method is
very suitable for PMLM drives with model or parametric



uncertainty or disturbance spectrum uncertainty. Most physical
system can achieve ideal performance when controlled by a
proper H,, controller.

Further investigation should be conducted that a load is
suddenly thrown to the system while the motor is running. The
dynamic performance of the whole system will be evaluated
under more uncertainties. This will be very useful to practical
transportation systems.
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APPENDIX

Below are the motor parameters used in the simulation and
the actual implementation:
phase resistance R: 8.6 ohmy;
phase synchronous inductance L: 6 mH;
permanent magnet flux linkage A: 0.35 %;
pole pitch of the permanent magnets z: 0.031 m;
number of pole-pair(s) p,: 1;
total mass of moving part excluding load m: 1.635 kg;
viscous damping coefficient B,: 0.1 Wm;
total friction coefficient u: 1 N/kg;
maximum travelling distance: 0.18m.
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